984 resultados para Prenylated flavonoids
The spindle assembly checkpoint as a drug target - Novel small-molecule inhibitors of Aurora kinases
Resumo:
Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.
Resumo:
In recent years, the Brazilian Health Ministry and the World Health Organization have supported research into new technologies that may contribute to the surveillance, new treatments, and control of visceral leishmaniasis within the country. In light of this, the aim of this study was to isolate compounds from plants of the Caatinga biome, and to investigate their toxicity against promastigote and amastigote forms of Leishmania infantum chagasi, the main responsible parasite for South American visceral leishmaniasis, and evaluate their ability to inhibit acetylcholinesterase enzyme (AChE). A screen assay using luciferase-expressing promastigote form and an in situ ELISA assay were used to measure the viability of promastigote and amastigote forms, respectively, after exposure to these substances. The MTT colorimetric assay was performed to determine the toxicity of these compounds in murine monocytic RAW 264.7 cell line. All compounds were tested in vitro for their anti-cholinesterase properties. A coumarin, scoparone, was isolated from Platymiscium floribundum stems, and the flavonoids rutin and quercetin were isolated from Dimorphandra gardneriana beans. These compounds were purified using silica gel column chromatography, eluted with organic solvents in mixtures of increasing polarity, and identified by spectral analysis. In the leishmanicidal assays, the compounds showed dose-dependent efficacy against the extracellular promastigote forms, with an EC50 for scoporone of 21.4µg/mL, quercetin and rutin 26 and 30.3µg/mL, respectively. The flavonoids presented comparable results to the positive control drug, amphotericin B, against the amastigote forms with EC50 for quercetin and rutin of 10.6 and 43.3µg/mL, respectively. All compounds inhibited AChE with inhibition zones varying from 0.8 to 0.6, indicating a possible mechanism of action for leishmacicidal activity.
Resumo:
Tankyrases belong to the Diphtheria toxin-like ADP-ribosyltransferase (ARTD) enzyme superfamily, also known as poly(ADP-ribose) polymerases (PARPs). They catalyze a covalent post-translational modification reaction where they transfer ADP-ribose units from NAD+ to target proteins. Tankyrases are involved in many cellular processes and their roles in telomere homeostasis, Wnt signaling and in several diseases including cancers have made them interesting drug targets. In this thesis project, selective inhibition of human tankyrases was studied. A homogeneous fluorescence-based assay was developed to screen the compound libraries. The assay is inexpensive, operationally easy, and performs well according to the statistical analysis. Assay suitability was confirmed by screening a natural product library. Flavone was identified as the most potent inhibitor in the library and this motivated us to screen a larger flavonoid library. Results showed that flavones were indeed the best inhibitor of tankyrases among flavonoids. To further study the structure-activity relationship, a small library of flavones containing single substitution was screened and potency measurements allowed us to generate structure-activity relationship. Compounds containing substitutions at 4´-position were more potent in comparison to other substitutions, and importantly, hydrophobic groups improved isoenzyme selectivity as well as the potency. A flavone derivative containing a hydrophobic isopropyl group (compound 22), displayed 6 nM potency against TNKS1, excellent isoenzyme selectivity and Wnt signaling inhibition. Protein interactions with compounds were studied by solving complex crystal structures of the compounds with TNKS2 catalytic domain. A novel tankyrase inhibitor (IWR-1) was also crystallized in complex with TNKS2 catalytic domain. The crystal structure of TNKS2 in complex with IWR-1 showed that the compound binds to adenosine site and it was the first known ARTD inhibitor of this kind. To date, there is no structural information available about the substrate binding with any of the ARTD family members; therefore NAD+ was soaked with TNKS2 catalytic domain crystals. However, analysis of crystal structure showed that NAD+ was hydrolyzed to nicotinamide. Also, a co-crystal structure of NAD+ mimic compound, EB-47, was solved which was used to deduce some insights about the substrate interactions with the enzyme. Like EB-47, other ARTD1 inhibitors were also shown to inhibit tankyrases. It indicated that selectivity of the ARTD1 inhibitors should be considered as some of the effects in cells could come from tankyrase inhibition. In conclusion, the study provides novel information on tankyrase inhibition and presents new insight into the selectivity and potency of compounds.
Resumo:
Asteraceae weeds are rich in chemicals that have biological and pharmaceutical activities. The aims of this work were to describe the phytochemistry and quantify the polyphenols in ethanol extracts from leaves of 12 species of Asteraceae weeds collected in Diamantina, Minas Gerais State, Brazil. The screening of Asteraceae extracts revealed the presence of tannins, steroids, triterpenes, anthocyanins, and flavonoids. The total phenolic content was high in extracts of Lychnophora ericoides (147.97 ± 2.66), Lepidaploa lilacina (141.11 ± 1.99), and Eremanthus elaeagnus (134.61 ± 7.81) and low in extracts of Lychnophora ramosissima (32.65 ± 0.70), and Lychnophora sp. (54.03 ± 0.73). Extracts of Asteraceae weeds from Diamantina could have potential for biological studies that are searching for new pesticides and drugs.
Resumo:
Foram realizadas análises quantitativas de flavonóides, fenóis solúveis e taninos de folhas de Pyrostegia venusta coletadas na mata e no cerrado, com o objetivo de verificar a influência desses biócoros na sua produção. Tanto os resultados de flavonóides como os de fenóis não mostraram diferenças significativas entre as plantas de mata e cerrado, sugerindo que a espécie não apresenta plasticidade fenotípica baseada nesses caracteres, considerando as diferenças de solo dos locais de coleta. Não foram detectados taninos nas folhas desta espécie.
Resumo:
The objective of this work was to study, using light and fluorescence microscopy and scanning electron microscopy, the morphology and secretory products of glandular trichomes of Cordia verbenacea DC. (Boraginaceae), known as 'baleeira', a species used in folk medicine as anti-inflammatory, analgesic, anti-ulcerogenic and healing agent. Two classes of glandular trichomes were recognized, globular and reniform. A morphological study of the secretory head and the characterization of the secretory product are also presented. Secretory products of globular trichomes consisted of essential oils, whereas reniform trichomes consisted basically of phenolic compounds such as flavonoids. No pre-established regions for releasing secretory products were found.
Resumo:
Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.
Resumo:
Atherosclerosis is a chronic inflammatory disease which may cause obstructions of the coronary, cerebral and peripheral arteries. It is typically multifactorial, most often dependent on risk factors such as hypercholesterolemia, diabetes, smoking, hypertension, sedentarism, and obesity. It is the single main cause of death in most developed countries due to myocardial infarction, angina, sudden death, and heart failure. Several epidemiological studies suggest that moderate alcohol intake, especially red wine, decrease cardiac mortality due to atherosclerosis. The alcohol effect is described by a J curve, suggesting that moderate drinkers may benefit while abstainers and heavy drinkers are at higher risk. Experimental studies indicate that most beneficial effects of drinking are attributable to flavonoids that are present in red wine, purple grape juice and several fruits and vegetables. The mechanisms include antiplatelet actions, increases in high-density lipoprotein, antioxidation, reduced endothelin-1 production, and increased endothelial nitric oxide synthase expression which causes augmented nitric oxide production by endothelial cells. These findings lead to the concept that moderate red wine drinking, in the absence of contraindications, may be beneficial to patients who are at risk of atherosclerotic cardiovascular events. Moreover, a diet based on fruits and vegetables containing flavonoids may be even more beneficial.
Resumo:
The objective of the present investigation was to determine the contractile effect of crude and acetone leaf extracts of Citrus sinensis (L.) Osb. on mammalian myocardium. Crude leaf extracts have been used in folk medicine to treat neurological disorders. Some flavonoids isolated from this plant presented a positive inotropic effect on myocardium. This motivated us to test the extracts on the atria of guinea pigs of both sexes (300-500 g) and surprisingly we observed inotropic depression instead of an increase in force. The maximum effect of the crude extract was 79.4 ± 8.1% of the control force amplitude (N = 5 hearts, 10 trials, 27 ± 0.1ºC, stimulus: 2 Hz, 400 V, 0.5 ms). The EC50 for crude, ethanol, acetic, aqueous, and acetone extracts was 300, 300, 600, 1000, and 140 µg/ml, respectively, with a Hill constant of 1.8, 2.0, 2.5, 2.0, and 1.4, respectively. Blockade of cholinergic, beta-adrenergic, or opioid membrane receptors with 1.5 µM atropine sulfate, 1 µM propranolol, and 10 µM naloxone, respectively, did not change the effect of the crude extract. The acetone extract abolished the Bowditch positive staircase phenomenon (N = 5 hearts, 10 trials, 27 ± 0.1ºC), suggesting a possible reduction of the calcium inward current, and also promoted the so-called Woodworth phenomenon. The effect was concentration-dependent and indicated the existence of another inhibitory contractile mechanism such as the simultaneous activation of some of the membrane potassium channels reducing the myocardial action potential duration and further decreasing the cellular calcium entry.
Resumo:
It has been reported that star fruit can lead to a fatal outcome in uremic patients. The intoxication syndrome consists of hiccups, mental confusion, dizziness, and vomiting. On the other hand, folk medicine uses teas and infusions of carambola leaves to treat headache, vomiting, cough, insomnia, and diabetes. This motivated us to determine if Averrhoa carambola can act on the contractility and automaticity of the guinea pig heart. We measured the atrial isometric force in stimulated left atria and determined the chronotropic changes in spontaneously beating right atria. The carambola leaf extracts (1.5 mg/ml) abolished the contractile force in a concentration-dependent manner. Among the crude, methanolic, ethanolic, aqueous, and acetic extracts, the aqueous one was the most potent (EC50 = 520 ± 94 µg/ml; flavonoids and tannins are the main constituents; Na+ and K+ contents in 1.0 mg/ml of aqueous extract were 0.12 ± 0.016 and 1.19 ± 0.15 mM, respectively). The aqueous extract abolished the positive Bowditch staircase phenomenon and reduced the inotropic response to CaCl2 (0.17-8.22 mM), events that are dependent on the cellular Ca2+ inward current. The adrenergic, muscarinic or opioid membrane receptors do not seem to participate in the mechanism of action of the cardioactive substance(s). In spontaneously beating atria, the aqueous extract promoted a negative chronotropic effect that was antagonized by 0.1 µM isoproterenol bitartrate. With this agonist, the EC50 of the aqueous extract increased from 133 ± 58 to 650 ± 100 µg/ml. These data regarding the effect of A. carambola on guinea pig atrial contractility and automaticity indicate an L-type Ca2+ channel blockade.
Resumo:
Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 ± 8.1 years) without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ), 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 ± 28.7 mg/dl) but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 ± 7.1 vs 12.1 ± 4.5%; P < 0.05) and increased with both GJ (10.1 ± 7.1 before vs 16.9 ± 6.7% after: P < 0.05) and RW (10.1 ± 6.4 before vs 15.6 ± 4.6% after; P < 0.05). RW, but not GJ, also significantly increased endothelium-independent vasodilation (17.0 ± 8.6 before vs 23.0 ± 12.0% after; P < 0.01). GJ reduced ICAM-1 but not VCAM and RW had no effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.
Resumo:
The cytotoxicity of three extracts (petroleum ether, ethyl acetate and n-butanol) from a plant used in folk medicine, Marchantia convoluta, to human non-small cell lung carcinoma (H1299) and liver carcinoma (HepG2) cell lines was tested. After 72-h incubation of lung and liver cancer cell cultures with varying concentrations of extracts (15 to 200 µg/mL), cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and reported in terms of cell viability. The extracts that showed a significant cytotoxicity were subjected to gas chromatography-mass spectrometry analysis to identify the components. The ethyl acetate, but not the petroleum ether or n-butanol extract, had a significant cytotoxicity against lung and liver carcinoma cells with IC50 values of 100 and 30 µg/mL, respectively. A high concentration of ethyl acetate extract (100 µg/mL) rapidly reduced the number of H1299 cells. At lower concentrations of ethyl acetate extract (15, 30, and 40 µg/mL), the numbers of HepG2 cells started to decrease markedly. Gas chromatography-mass spectrometry analysis of the ethyl acetate extract revealed the presence of several compounds such as phytol (23.42%), 1,2,4-tripropylbenzene (13.09%), 9-cedranone (12.75%), ledene oxide (7.22%), caryophyllene (1.82%), and caryophyllene oxide (1.15%). HPLC analysis result showed that there were no flavonoids in ethyl acetate extract, but flavonoids are abundant in n-butanol extract. Further studies are needed regarding the identification, toxicity, and mechanism of action of active compounds.
Resumo:
Myrtaceae is a plant family widely used in folk medicine and Syzygium and Eugenia are among the most important genera. We investigated the anti-allergic properties of an aqueous leaf extract of Syzygium cumini (L.) Skeels (SC). HPLC analysis revealed that hydrolyzable tannins and flavonoids are the major components of the extract. Oral administration of SC (25-100 mg/kg) in Swiss mice (20-25 g; N = 7/group) inhibited paw edema induced by compound 48/80 (50% inhibition, 100 mg/kg; P <= 0.05) and, to a lesser extent, the allergic paw edema (23% inhibition, 100 mg/kg; P <= 0.05). SC treatment also inhibited the edema induced by histamine (58% inhibition; P <= 0.05) and 5-HT (52% inhibition; P <= 0.05) but had no effect on platelet-aggregating factor-induced paw edema. SC prevented mast cell degranulation and the consequent histamine release in Wistar rat (180-200 g; N = 7/group) peritoneal mast cells (50% inhibition, 1 µg/mL; P <= 0.05) induced by compound 48/80. Pre-treatment of BALB/c mice (18-20 g; N = 7/group) with 100 mg/kg of the extract significantly inhibited eosinophil accumulation in allergic pleurisy (from 7.662 ± 1.524 to 1.89 ± 0.336 x 10(6)/cavity; P <= 0.001). This effect was related to the inhibition of IL-5 (from 70.9 ± 25.2 to 12.05 ± 7.165 pg/mL) and CCL11/eotaxin levels (from 60.4 ± 8.54 to 32.8 ± 8.4 ng/mL) in pleural lavage fluid, using ELISA. These findings demonstrate an anti-allergic effect of SC, and indicate that its anti-edematogenic effect is due to the inhibition of mast cell degranulation and of histamine and serotonin effects, whereas the inhibition of eosinophil accumulation in the allergic pleurisy model is probably due to an impairment of CCL11/eotaxin and IL-5 production.
Resumo:
This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.
Resumo:
Ethanolic extracts and essential oils from Green Propolis from southeastern Brazil and leaf buds from its botanical origin Baccharis dracunculifolia were analyzed by Reversed Phase High Performance Liquid Chromatography (RP-HPLC), Reversed Phase High Performance Thin Layer Chromatography (RP-HPTLC) and Gas Chromatography - Mass Spectrometry (GC-MS). The essential oils were obtained by hydro-distillation. Both ethanolic extracts and essential oils showed similar chromatographic profiles. Thirteen flavonoids were identified by RP-HPLC and RP-HPTLC analyses in both samples. Twenty-three volatile compounds were identified by GC-MS analyses. Seventeen were present in both essential oils. The major flavonoid compound in both extracts was artepillin C. The major volatile compound in both essential oils was nerolidol. The major compounds identified in this work could be used as chemical markers in order to classify and identify botanical origins of propolis.