912 resultados para Power systems reliability


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A stochastic programming approach is proposed in this paper for the development of offering strategies for a wind power producer. The optimization model is characterized by making the analysis of several scenarios and treating simultaneously two kinds of uncertainty: wind power and electricity market prices. The approach developed allows evaluating alternative production and offers strategies to submit to the electricity market with the ultimate goal of maximizing profits. An innovative comparative study is provided, where the imbalances are treated differently. Also, an application to two new realistic case studies is presented. Finally, conclusions are duly drawn.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power systems have been through deep changes in recent years, namely due to the operation of competitive electricity markets in the scope the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new type of player that allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles (V2G) and consumers) to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players’ benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os Transformadores de potência são máquinas de elevada importância ao nível dos Sistemas Elétricos de Energia (SEE) uma vez que são estas máquinas que possibilitam a interligação dos diferentes níveis de tensão da rede e a transmissão de energia elétrica em Corrente Alternada (CA). Geralmente, estas máquinas são de grandes dimensões e de elevado nível de complexidade construtiva. Caracterizam-se por possuírem períodos de vida útil bastante elevados (vinte a trinta anos) e preços elevados, o que conduz a um nível de exigência de fiabilidade muito elevada, uma vez que não e viável a existência de muitos equipamentos de reserva nos SEE. Com o objetivo de tentar maximizar o período de vida útil dos transformadores de potência e a sua fiabilidade, tenta-se, cada vez mais, implementar conceitos de manutenção preventiva a este tipo de máquinas. No entanto, a gestão da sua vida útil e extremamente complexa na medida em que, estas máquinas têm vários componentes cruciais e suscetiveis de originar falhas e, quase todos eles, encontram-se no interior de uma cuba. Desta forma, não e possível obter uma imagem do seu estado, em tempo real, sem colocar o transformador fora de serviço, algo que acarreta custos elevados. Por este motivo, desenvolveu-se uma técnica que permite obter uma indicação do estado do transformador, em tempo real, sem o retirar de serviço, colhendo amostras do óleo isolante e procedendo a sua análise físico-química e Analise Gases Dissolvidos (DGA). As análises aos óleos isolantes tem vindo a adquirir uma preponderância muito elevada no diagnóstico de falhas e na analise do estado de conservação destes equipamentos tendo-se desenvolvido regras para interpretação dos parâmetros dos óleos com carácter normativo. Considerando o conhecimento relativo a interpretação dos ensaios físico-químicos e DGA ao oleol, e possível desenvolver ferramentas capazes de otimizar essas mesmas interpretações e aplicar esse conhecimento no sentido de prever a sua evolução, assim como o surgimento de possíveis falhas em transformadores, para assim otimizar os processos de manutenção. Neste campo as Redes Neuronais Artificiais (RNAs) têm um papel fundamental

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The authors discuss an implementation of an object oriented (OO) fault simulator and its use within an adaptive fault diagnostic system. The simulator models the flow of faults around a power network, reporting switchgear indications and protection messages that would be expected in a real fault scenario. The simulator has been used to train an adaptive fault diagnostic system; results and implications are discussed.