946 resultados para Polyethylene Terephthalates
Resumo:
We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.
Resumo:
Topical ocular drug delivery has always been a challenge for pharmaceutical technology scientists. In the last two decades, many nano-systems have been studied to find ways to overcome the typical problems of topical ocular therapy, such as difficult corneal penetration and poor drug availability. In this study, methoxy poly(ethylene glycol)-hexylsubstituted poly(lactides) (MPEG-hexPLA) micelle formulations, which are promising nanocarriers for poorly water soluble drugs, were investigated for the delivery of Cyclosporin A (CsA) to the eye. As a new possible pharmaceutical excipient, the ocular compatibility of MPEG-hexPLA micelle formulations was evaluated. An in vitro biocompatibility assessment on human corneal epithelial cells was carried out using different tests. Cytotoxicity was studied by using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), and clonogenic tests and revealed that the CsA formulations and copolymer solutions were not toxic. After incubation with MPEG-hexPLA micelle formulations, the activation of caspase-dependent and -independent apoptosis as well as autophagy was evaluated using immunohistochemistry by analyzing the localization of four antibodies: (1) anti-caspase 3; (2) anti-apoptotic inducing factor (AIF); (3) anti-IL-Dnase II and (4) anti-microtubule-associated protein 1 light chain 3 (LC3). No apoptosis was induced when the cells were treated with the micelle solutions that were either unloaded or loaded with CsA. The ocular tolerance was assessed in vivo on rabbit eyes by Confocal Laser Scanning Ophthalmoscopy (CLSO), and very good tolerability was seen. The observed corneal surface was comparable to a control surface that was treated with a 0.9% NaCl solution. In conclusion, these results demonstrate that MPEG-hexPLA micelles are promising drug carriers for ocular diseases involving the activation of cytokines, such as dry eye syndrome and autoimmune uveitis, or for the prevention of corneal graft rejection.
Resumo:
Biological nitrogen fixation by rhizobium-legume symbiosis represents one of the most important nitrogen sources for plants and depends strongly on the symbiotic efficiency of the rhizobium strain. This study evaluated the symbiotic capacity of rhizobial isolates from calopo (CALOPOGONIUM MUCUNOIDES) taken from an agrisoil under BRACHIARIA DECUMBENS pasture, sabiá (MIMOSA CAESALPINIIFOLIA) plantations and Atlantic Forest areas of the Dry Forest Zone of Pernambuco. A total of 1,575 isolates were obtained from 398 groups. A single random isolate of each group was authenticated, in randomized blocks with two replications. Each plant was inoculated with 1 mL of a bacterial broth, containing an estimated population of 10(8) rhizobial cells mL-1. Forty-five days after inoculation, the plants were harvested, separated into shoots, roots and nodules, oven-dried to constant mass, and weighed. Next, the symbiotic capability was tested with 1.5 kg of an autoclaved sand:vermiculite (1:1) mixture in polyethylene bags. The treatments consisted of 122 authenticated isolates, selected based on the shoot dry matter, five uninoculated controls (treated with 0, 50, 100, 150, or 200 kg ha-1 N) and a control inoculated with SEMIA 6152 (=BR1602), a strain of BRADYRHIZOBIUM JAPONICUM The test was performed as described above. The shoot dry matter of the plants inoculated with the most effective isolates did not differ from that of plants treated with 150 kg ha-1 N. Shoot dry matter was positively correlated with all other variables. The proportion of effective isolates was highest among isolates from SABIÁ forests. There was great variation in nodule dry weight, as well as in N contents and total N.
Resumo:
BACKGROUND AND OBJECTIVES: Experimental assessment of photodynamic therapy (PDT) for malignant pleural mesothelioma using a polyethylene glycol conjugate of meta-tetrahydroxyphenylchlorin (PEG-mTHPC). STUDY DESIGN/MATERIALS AND METHODS: (a) PDT was tested on H-meso-1 xenografts (652 nm laser light; fluence 10 J/cm(2); 0.93, 9.3, or 27.8 mg/kg of PEG-mTHPC; drug-light intervals 3-8 days). (b) Intraoperative PDT with similar treatment conditions was performed in the chest cavity of minipigs (n = 18) following extrapleural pneumonectomy (EPP) using an optical integrating balloon device combined with in situ light dosimetry. RESULTS: (a) PDT using PEG-mTHPC resulted in larger extent of tumor necrosis than in untreated tumors (P < or = 0.01) without causing damage to normal tissue. (b) Intraoperative PDT following EPP was well tolerated in 17 of 18 animals. Mean fluence and fluence rates measured at four sites of the chest cavity ranged from 10.2 +/- 0.2 to 13.2 +/- 2.3 J/cm(2) and 5.5 +/- 1.2 to 7.9 +/- 1.7 mW/cm(2) (mean +/- SD). Histology 3 months after light delivery revealed no PDT related tissue injury in all but one animal. CONCLUSIONS: PEG-mTHPC mediated PDT showed selective destruction of mesothelioma xenografts without causing damage to intrathoracic organs in pigs at similar treatment conditions. The light delivery system afforded regular light distribution to different parts of the chest cavity.
Resumo:
The influence of incorporating 5-tert-butyl isophthalic units (tBI) in the polymer chain of poly(ethylene terephthalate) (PET) on the crystallization behavior, crystal structure, and tensile and gas transport properties of this polyester was evaluated. Random poly(ethyleneterephthalate-co-5-tert-butyl isophthalate) copolyesters (PETtBI) containing between 5 and 40 mol% of tBI units were examined. Isothermal crystallization studies were performed on amorphous glassy films at 120 8C and on molten samples at 200 8C by means of differential scanning calorimetry. Furthermore, the non-isothermal crystallization behavior of the copolyesters was investigated. It was observed that both crystallinity and crystallization rate of the PETtBI copolyesters tend to decrease largely with the comonomeric content, except for the copolymer containing 5 mol% of tBI units, which crystallized faster than PET. Fiber X-ray diffraction patterns of the semicrystalline PETtBI copolyesters proved that they adopt the same triclinic crystal structure as PET with the comonomeric units being excluded from the crystalline phase. Although PETtBI copolyesters became brittle for higher contents in tBI, the tensile modulus and strength of PET were barely affected by copolymerization. The ncorporation of tBI units slightly increased the permeability of PET, but copolymers containing up to 20 mol% of the comonomeric units were still able to present barrier properties.
Resumo:
A work was carried out with the purpose of verifying the biochemical changes associated to soybean (Glycine max (L.) Merrill) seeds osmoconditioning. Seeds of the UFV 10, IAC 8 and Doko RC cultivars harvested at R8 development stage and submitted to different treatments were used. The biochemical evaluations were performed during seed storage, after the hydration-dehydration process. Initially, seeds were osmoconditioned in a polyethylene glycol (PEG 6000) solution, with the osmotic potential of -0.8 MPa and 20ºC, for a period of four days. After that, seeds were dried back until the initial moisture content (10-11%) and stored in natural conditions for three and six months. Two controls were used: untreated seeds (dry seeds) and water soaked seeds. Seed changes in protein and lipid, hexanal accumulation and fatty acids contents were evaluated. The results showed that seed storage under laboratory natural conditions caused reduction in protein, lipid and polyunsaturated fatty acids content and promoted hexanal production. Storage periods reduced protein levels for all treatments, however the PEG 6000 treatment showed lower protein reduction. The soybean seed storage increased hexanal production, but hexanal levels were smaller with osmoconditioning comparing to the other imbibition treatments.
Resumo:
A procedure is described to regenerate plants from protoplasts of Brazilian citrus cultivars, after isolation, fusion and culture. Protoplasts were isolated from embryogenic cell suspension cultures and from leaf mesophyll of seedlings germinated in vitro. The enzyme solution for protoplast isolation was composed of mannitol (0.7 M), CaCl2 (24.5 mM), NaH2PO4 (0.92 mM), MES (6.15 mM), cellulase (Onozuka RS - Yakult, 1%), macerase (Onozuka R10 - Yakult, 1%) and pectolyase Y-23 (Seishin, 0.2%). Protoplast culture in liquid medium after chemical fusion lead to the formation of callus colonies further adapted to solid medium. Somatic embryo formation occurred spontaneously after two subcultures, on modified MT medium supplemented with 500 mg/L of malt extract. Well defined embryos were germinated in modified MT medium with addition of GA3 (2.0 muM) and malt extract (500 mg/L). Plant regeneration was also achieved by adventitious shoots obtained through direct organogenesis of not well defined embryos in modified MT medium with addition of malt extract (500 mg/L), BAP (1.32 muM), NAA (1.07 muM) and coconut water (10 mL/L). Plantlets were transferred to root medium. Rooted plants were transferred to a greenhouse for further adaptation and development.
Resumo:
Soil solarization is a technique used for weed and plant disease control in regions with high levels of solar radiation. The effect of solarization (0, 3, 6, and 9 weeks) upon weed populations, carrot (Daucus carota L. cv. Brasília) yield and nematode infestation in carrot roots was studied in São Luís (2º35' S; 44º10' W), MA, Brazil, using transparent polyethylene films (100 and 150 mm of thickness). The maximum temperature at 5 cm of depth was about 10ºC warmer in solarized soil than in control plots. In the study 20 weed types were recorded. Solarization reduced weed biomass and density in about 50% of weed species, including Cyperus spp., Chamaecrista nictans var. paraguariensis (Chod & Hassl.) Irwin & Barneby, Marsypianthes chamaedrys (Vahl) O. Kuntze, Mitracarpus sp., Mollugo verticillata L., Sebastiania corniculata M. Arg., and Spigelia anthelmia L. Approximately 40% of species in the weed flora were not affected by soil mulching. Furthermore, seed germination of Commelina benghalensis L. was increased by soil solarization. Marketable yield of carrots was greater in solarized soil than in the unsolarized one. It was concluded that solarization for nine weeks increases carrot yield and is effective for controlling more than half of the weed species recorded. Mulching was not effective for controlling root-knot nematodes in carrot.
Resumo:
This study aimed to assess the response of apical and periapical tissues of dogs¿ teeth after root canal filling with different materials. Forty roots from dogs¿ premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated amonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.
Resumo:
BACKGROUND: Chronic hepatitis C infection is a major cause of end-stage liver disease. Therapy outcome is influenced by 25-OH vitamin D deficiency. To further address this observation, our study investigates the impact of the vitamin D receptor (NR1I1) haplotype and combined effects of plasma vitamin D levels in a well-described cohort of hepatitis C patients. METHODS: A total of 155 chronic hepatitis C patients were recruited from the Swiss Hepatitis C Cohort Study for NR1I1 genotyping and plasma 25-OH vitamin D level measurement. NR1I1 genotype data and combined effects of plasma 25-OH vitamin D level were analysed regarding therapy response (sustained virological response). RESULTS: A strong association was observed between therapy non-response and the NR1I1 CCA (bAt) haplotype consisting of rs1544410 (BsmI) C, rs7975232 (ApaI) C and rs731236 (TaqI) A alleles. Of the HCV patients carrying the CCA haplotype, 50.3% were non-responders (odds ratio [OR] 1.69, 95% CI 1.07, 2.67; P=0.028). A similar association was observed for the combinational CCCCAA genotype (OR 2.94, 95% CI 1.36, 6.37; P=0.007). The combinational CCCCAA genotype was confirmed as an independent risk factor for non-response in multivariate analysis (OR 2.50, 95% CI 1.07, 5.87; P=0.034). Analysing combined effects, a significant impact of low 25-OH vitamin D levels on sustained virological response were only seen in patients with the unfavourable NR1I1 CCA (bAt) haplotype (OR for non-SVR 3.55; 95% CI 1.005, 12.57; P=0.049). CONCLUSIONS: NR1I1 vitamin D receptor polymorphisms influence response to pegylated-interferon/ribavirin-based therapy in chronic hepatitis C and exert an additive genetic predisposition to previously described low 25-OH vitamin D serum levels.
Resumo:
Introduction: A new ultra congruent, postero-stabilized total knee arthroplasty (TKA) with a mobile bearing, the FIRST knee prosthesis (Free Insert in Rotation Stabilized in Translation, Symbios SA), was designed and expected to significantly reduce polyethylene wear, to improve the range of motion and the overall stability of the knee while ensuring a physiological ligament balance. Gait analysis has proven to give really objective outcome parameters after lower limb surgery. The goal of our study was to compare the subjective and really objective results of this new TKA with two other widespread models of TKA. Methods: A clinical prospective monocentric cohort study of 100 consecutive patients (47-88 yrs) undergoing a FIRST TKA for primary osteoarthritis is currently being done. Pre- and post-operative follow-ups (6 weeks, 4 months and 1 year) were done with well-recognized subjective evaluations (EQ-5D and WOMAC scores) and semi-objective questionnaires (KSS score and radiography evaluation) as well as with a really objective evaluation using gait parameters from 6 walking trials, performed at different speeds (slow, normal and fast) with an ambulatory gait analysis system (Physilog®, BioAGM CH). The outcomes of the first 32 new TKA after one year of follow-up were compared to the results after 1 year of a randomized controlled clinical trial comparing 29 NexGen® postero-stabilized TKA (Zimmer Inc) with a fixed bearing and 26 NexGen® TKA with a mobile bearing using the same methods. Results: Subjective and semi-objective results were similar for the three types of TKA. As for the really objective parameters, the gait cycle time of the FIRST TKA was statistically significantly shorter at normal speed of walk, as well as double-support periods, as compared to both standard models. The extension (in terms of range of motion when walking) of the operated knee was significantly improved for all three types of walk in favour of the FIRST TKAs compared to both NexGen TKAs. The normal walking speed was significantly higher with faster swing speed and stride lengths for the new TKA. Significantly better coordination scores were observed at normal walking speed for the FIRST TKA as compared to the fixed-bearing TKAs. Conclusion: The FIRST TKAs showed statistically significantly better objective outcomes in terms of gait after one year of follow-up with similar subjective and semi-objective results in comparison with widespread TKA designs. These encouraging short-terms results will have to be confirmed at a 5 years follow-up of the FIRST TKAs.
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.
Resumo:
BACKGROUND & AIMS: Recent studies have described a major impact of genetic variations near the IL28B gene on the natural course and outcome of antiviral therapy in chronic hepatitis C. We therefore, aimed to explore the impact of donor and recipient genotypes of these polymorphisms on hepatitis C virus (HCV) liver graft reinfection. METHODS: Donor and recipient genotypes of IL28B rs12979860C>T single nucleotide polymorphism were determined in 91 patients with HCV liver graft reinfection, 47 of whom were treated with pegylated interferon-α (PEG-IFN-α) and ribavirin. IL28B genetic polymorphisms were correlated with the natural course and treatment outcome of recurrent hepatitis C. RESULTS: Patients requiring liver transplantation due to end-stage chronic hepatitis C appeared to be selected toward the adverse genotypes rs12979860 CT/TT compared to non-transplanted HCV-infected patients (p=0.046). Patients with the donor genotype rs12979860 CC had higher peak ALT and HCV RNA serum concentrations than those with CT/TT (p=0.04 and 0.06, respectively). No association was observed between ALT/HCV RNA serum concentrations and recipient genotypes (p>0.3). More important, donor IL28B rs12979860 CC vs. CT/TT genotypes were associated with rapid, complete early, and sustained virologic response (RVR, cEVR, SVR) to treatment with PEG-IFN-α and ribavirin (p=0.003, 0.0012, 0.008, respectively), but weaker associations of recipient genotypes with RVR, cEVR, and SVR were observed as well (p=0.0046, 0.115, 0.118, respectively). CONCLUSIONS: We provide evidence for a dominant, but not exclusive impact of the donor rather than the recipient IL28B genetic background on the natural course and treatment outcome of HCV liver graft reinfection.
Resumo:
There is increasing evidence that modular neck stems are prone to corrosion-related complications. Recent studies showed elevated metal ions levels and occasional pseudotumor formation in patients with such implants. The purpose of this study was to compare systemic metal-ion levels in patients after primary THA with modular neck stems to those of patients after non-modular implants. To our knowledge, this is the first cohort study including a control group, THA without CoCr heads and dry-assembled neck-stem connections. Methods: 50 patients after THA at a minimum follow-up of 1 year have been selected for the study. Patients with multiple prosthesis or other implants have been deselected. All received a cementless SPS stem from Symbios (Ti6Al4V). 40 patients have the modular neck (CoCr) version and 10 a monobloc version. All bearings were either ceramic-ceramic or ceramic-polyethylene to minimize other sources of CoCr ion release. In the modular group, the neck was chosen pre-operatively based on a 3D planning, allowing for a dry assembly of the stem and neck on the back table before implantation. A plasma system coupled to mass spectrometry was used for a complete elementary quantification in blood and serum separately. Clinical outcome was measured using the Oxford Hip Score. Results : Complete data sets of 29 patients (24 in the modular neck-group (10male, mean age 63y, 35-84y) and 5 in the monobloc-group (3 male, 69 y, 51-83y) are available to date. Mean Co blood levels were .95 ug/L (.14-12.4) in the modular group vs .27 ug/L (.10-.73) in the monobloc group (p=.2). Respective values for Cr were significantly higher in the modular group (.99 g/L; range .75-1.21) compared to those in the monobloc group (.74 g/L ;.62-.86; p=.001). No significant difference was found when comparing serum levels. 5/24 patients had Co levels above 1 g/L (12/24 for Cr), which is by some considered as a relevant elevation. The maximum Co level was measured in an asymptomatic patient. The Oxford Hip Scores were similar in both groups. Conclusion: Cr levels were significantly elevated in the modular neck group compared to those in the monobloc group. 1/24 patients with a modular prosthesis exhibited Co levels, which are beyond the threshold accepted even for metal-on-metal bearing couples. These results have contributed to our decision to abandon the use of modular neck stems. Routine follow-up including annual measurements of systemic CoCr concentrations should be considered.