998 resultados para Point Sources


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though the formal mathematical idea of introducing noninteger order derivatives can be traced from the 17th century in a letter by L’Hospital in which he asked Leibniz what the meaning of D n y if n = 1/2 would be in 1695 [1], it was better outlined only in the 19th century [2, 3, 4]. Due to the lack of clear physical interpretation their first applications in physics appeared only later, in the 20th century, in connection with visco-elastic phenomena [5, 6]. The topic later obtained quite general attention [7, 8, 9], and also found new applications in material science [10], analysis of earth-quake signals [11], control of robots [12], and in the description of diffusion [13], etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robot’s drive has to exert appropriate driving forces that can keep its arm and end effector at the proper position, velocity and acceleration, and simultaneously has to compensate for the effects of the contact forces arising between the tool and the workpiece depending on the needs of the actual technological operation. Balancing the effects of a priori unknown external disturbance forces and the inaccuracies of the available dynamic model of the robot is also important. Technological tasks requiring well prescribed end effector trajectories and contact forces simultaneously are challenging control problems that can be tackled in various manners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to assess the influence of meteorological conditions on the dispersion of particulate matter from an industrial zone into urban and suburban areas. The particulate matter concentration was related to the most important meteorological variables such as wind direction, velocity and frequency. A coal-fired power plant was considered to be the main emission source with two stacks of 225 m height. A middle point between the two stacks was taken as the centre of two concentric circles with 6 and 20 km radius delimiting the sampling area. About 40 sampling collectors were placed within this area. Meteorological data was obtained from a portable meteorological station placed at approximately 1.7 km to SE from the stacks. Additional data was obtained from the electrical company that runs the coal power plant. These data covers the years from 2006 to the present. A detailed statistical analysis was performed to identify the most frequent meteorological conditions concerning mainly wind speed and direction. This analysis revealed that the most frequent wind blows from Northwest and North and the strongest winds blow from Northwest. Particulate matter deposition was obtained in two sampling campaigns carried out in summer and in spring. For the first campaign the monthly average flux deposition was 1.90 g/m2 and for the second campaign this value was 0.79 g/m2. Wind dispersion occurred predominantly from North to South, away from the nearest residential area, located at about 6 km to Northwest from the stacks. Nevertheless, the higher deposition fluxes occurred in the NW/N and NE/E quadrants. This study was conducted considering only the contribution of particulate matter from coal combustion, however, others sources may be present as well, such as road traffic. Additional chemical analyses and microanalysis are needed to identify the source linkage to flux deposition levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present the first study on probabilistic tsunami hazard assessment for the Northeast (NE) Atlantic region related to earthquake sources. The methodology combines the probabilistic seismic hazard assessment, tsunami numerical modeling, and statistical approaches. We consider three main tsunamigenic areas, namely the Southwest Iberian Margin, the Gloria, and the Caribbean. For each tsunamigenic zone, we derive the annual recurrence rate for each magnitude range, from Mw 8.0 up to Mw 9.0, with a regular interval, using the Bayesian method, which incorporates seismic information from historical and instrumental catalogs. A numerical code, solving the shallow water equations, is employed to simulate the tsunami propagation and compute near shore wave heights. The probability of exceeding a specific tsunami hazard level during a given time period is calculated using the Poisson distribution. The results are presented in terms of the probability of exceedance of a given tsunami amplitude for 100- and 500-year return periods. The hazard level varies along the NE Atlantic coast, being maximum along the northern segment of the Morocco Atlantic coast, the southern Portuguese coast, and the Spanish coast of the Gulf of Cadiz. We find that the probability that a maximum wave height exceeds 1 m somewhere in the NE Atlantic region reaches 60 and 100 % for 100- and 500-year return periods, respectively. These probability values decrease, respectively, to about 15 and 50 % when considering the exceedance threshold of 5 m for the same return periods of 100 and 500 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet the increasing demands of the complex inter-organizational processes and the demand for continuous innovation and internationalization, it is evident that new forms of organisation are being adopted, fostering more intensive collaboration processes and sharing of resources, in what can be called collaborative networks (Camarinha-Matos, 2006:03). Information and knowledge are crucial resources in collaborative networks, being their management fundamental processes to optimize. Knowledge organisation and collaboration systems are thus important instruments for the success of collaborative networks of organisations having been researched in the last decade in the areas of computer science, information science, management sciences, terminology and linguistics. Nevertheless, research in this area didn’t give much attention to multilingual contexts of collaboration, which pose specific and challenging problems. It is then clear that access to and representation of knowledge will happen more and more on a multilingual setting which implies the overcoming of difficulties inherent to the presence of multiple languages, through the use of processes like localization of ontologies. Although localization, like other processes that involve multilingualism, is a rather well-developed practice and its methodologies and tools fruitfully employed by the language industry in the development and adaptation of multilingual content, it has not yet been sufficiently explored as an element of support to the development of knowledge representations - in particular ontologies - expressed in more than one language. Multilingual knowledge representation is then an open research area calling for cross-contributions from knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences. This workshop joined researchers interested in multilingual knowledge representation, in a multidisciplinary environment to debate the possibilities of cross-fertilization between knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences applied to contexts where multilingualism continuously creates new and demanding challenges to current knowledge representation methods and techniques. In this workshop six papers dealing with different approaches to multilingual knowledge representation are presented, most of them describing tools, approaches and results obtained in the development of ongoing projects. In the first case, Andrés Domínguez Burgos, Koen Kerremansa and Rita Temmerman present a software module that is part of a workbench for terminological and ontological mining, Termontospider, a wiki crawler that aims at optimally traverse Wikipedia in search of domainspecific texts for extracting terminological and ontological information. The crawler is part of a tool suite for automatically developing multilingual termontological databases, i.e. ontologicallyunderpinned multilingual terminological databases. In this paper the authors describe the basic principles behind the crawler and summarized the research setting in which the tool is currently tested. In the second paper, Fumiko Kano presents a work comparing four feature-based similarity measures derived from cognitive sciences. The purpose of the comparative analysis presented by the author is to verify the potentially most effective model that can be applied for mapping independent ontologies in a culturally influenced domain. For that, datasets based on standardized pre-defined feature dimensions and values, which are obtainable from the UNESCO Institute for Statistics (UIS) have been used for the comparative analysis of the similarity measures. The purpose of the comparison is to verify the similarity measures based on the objectively developed datasets. According to the author the results demonstrate that the Bayesian Model of Generalization provides for the most effective cognitive model for identifying the most similar corresponding concepts existing for a targeted socio-cultural community. In another presentation, Thierry Declerck, Hans-Ulrich Krieger and Dagmar Gromann present an ongoing work and propose an approach to automatic extraction of information from multilingual financial Web resources, to provide candidate terms for building ontology elements or instances of ontology concepts. The authors present a complementary approach to the direct localization/translation of ontology labels, by acquiring terminologies through the access and harvesting of multilingual Web presences of structured information providers in the field of finance, leading to both the detection of candidate terms in various multilingual sources in the financial domain that can be used not only as labels of ontology classes and properties but also for the possible generation of (multilingual) domain ontologies themselves. In the next paper, Manuel Silva, António Lucas Soares and Rute Costa claim that despite the availability of tools, resources and techniques aimed at the construction of ontological artifacts, developing a shared conceptualization of a given reality still raises questions about the principles and methods that support the initial phases of conceptualization. These questions become, according to the authors, more complex when the conceptualization occurs in a multilingual setting. To tackle these issues the authors present a collaborative platform – conceptME - where terminological and knowledge representation processes support domain experts throughout a conceptualization framework, allowing the inclusion of multilingual data as a way to promote knowledge sharing and enhance conceptualization and support a multilingual ontology specification. In another presentation Frieda Steurs and Hendrik J. Kockaert present us TermWise, a large project dealing with legal terminology and phraseology for the Belgian public services, i.e. the translation office of the ministry of justice, a project which aims at developing an advanced tool including expert knowledge in the algorithms that extract specialized language from textual data (legal documents) and whose outcome is a knowledge database including Dutch/French equivalents for legal concepts, enriched with the phraseology related to the terms under discussion. Finally, Deborah Grbac, Luca Losito, Andrea Sada and Paolo Sirito report on the preliminary results of a pilot project currently ongoing at UCSC Central Library, where they propose to adapt to subject librarians, employed in large and multilingual Academic Institutions, the model used by translators working within European Union Institutions. The authors are using User Experience (UX) Analysis in order to provide subject librarians with a visual support, by means of “ontology tables” depicting conceptual linking and connections of words with concepts presented according to their semantic and linguistic meaning. The organizers hope that the selection of papers presented here will be of interest to a broad audience, and will be a starting point for further discussion and cooperation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lisboa, cidade cenográfica é uma instalação que resulta dum processo de sucessivos registos de momentos, experiências e vivências da cidade de Lisboa, com diferentes narrativas. Através do método de assemblage de elementos retirados à rua e reconstruindo composições de blocos volumétricas que incluem desde imagens gráficas, à presença de fontes de luz e de som, e texturas várias, produzi uma instalação destinada a ser ocupada, como se do próprio processo de deambulação por uma cidade se tratasse – neste caso Lisboa. A instalação final, – Lisboa, cidade cenográfica -, constitui em si uma maqueta, como ponto de partida para um outro processo, quase interminável, que conduzisse a uma outra instalação que nos engolisse e se apoderasse da nossa presença. Manipulando diferentes escalas, composições e morfologias de espaço obter-se-ia uma instalação quase infindável, como a própria cidade. A actual instalação é como a síntese dum Fóssil Urbano. Na observação e captação de imagens da cidade houve a preocupação de efectuar a diferentes horas do dia. Os sons utilizados na instalação, foram gravados nas ruas de Lisboa e incluem desde sinos de igreja, ao chilrear de pássaros, aos aviões que sobrevoam, ao trânsito e respectivas buzinas e sirenes de ambulâncias, entre outros. No âmbito do desenvolvimento do projecto e desta Memória Descritiva, tive a preocupação de pedir a algumas pessoas – Cartas de Lisboa -, testemunhando o modo como habitam ou habitaram a cidade. Nos headphones presentes na instalação, ouve-se o poema Lisbon Revisited (1923), de Álvaro de Campos, completando assim o som ambiente de Lisboa, cidade cenográfica. Aquele poema só audível daquele modo, acaba por se sobrepor assim, dum modo subtil, aos outros sons ambiente (exteriores aos headphones).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Energia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresentação realizada na LivingAll European Conference, em Valência, Espanha, de 15-16 janeiro de 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis presented at the Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, to obtain a Master degree in Conservation and Restoration,Specialization in Textiles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório de Estágio Curricular apresentado ao Instituto Superior de Contabilidade e Administração do Porto para obtenção do Grau de Mestre em Logística Orientado pelo Doutor Júlio Faceira Guedes Coorientado pelo Engenheiro Ricardo Costa Moreira

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryo-microtome sections of larvae of Strongyloides stercoralis and S. ratti respectively obtained from human and rat feces cultures, were used as antigens. Fluoresceinate conjugates against human IgG were employed at the ideal titer of 10 for S. stercoralis and 100 for S. ratti. The sensitivity of the indirect immunofluorescence reaction (IIF) was 94.4% and 92.5% and the specificity 94.2% and 97.1% for the two specific larval antigens, respectively. Sera from 123 persons (54 from carriers of S. stercoralis infections and 69 from controls) were submitted to the reaction. The titers of different sera varied from 20 to 2560. There was a significant linear correlation (r = 0.85 p £ 0.001) between the antibodies from the two species of larval antigens. We conclude that both antigens may be used in the IIF reaction for the diagnosis of human strongyloidiasis. Due to the feasibility of safe and low-cost mass production of S. ratti larvae in the laboratory with a considerable economy of conjugate, their utilization in the serum diagnosis of human strongyloidiasis is recommended

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim is to examine the temporal trends of hip fracture incidence in Portugal by sex and age groups, and explore the relation with anti-osteoporotic medication. From the National Hospital Discharge Database, we selected from 1st January 2000 to 31st December 2008, 77,083 hospital admissions (77.4% women) caused by osteoporotic hip fractures (low energy, patients over 49 years-age), with diagnosis codes 820.x of ICD 9-CM. The 2001 Portuguese population was used as standard to calculate direct age-standardized incidence rates (ASIR) (100,000 inhabitants). Generalized additive and linear models were used to evaluate and quantify temporal trends of age specific rates (AR), by sex. We identified 2003 as a turning point in the trend of ASIR of hip fractures in women. After 2003, the ASIR in women decreased on average by 10.3 cases/100,000 inhabitants, 95% CI (− 15.7 to − 4.8), per 100,000 anti-osteoporotic medication packages sold. For women aged 65–69 and 75–79 we identified the same turning point. However, for women aged over 80, the year 2004 marked a change in the trend, from an increase to a decrease. Among the population aged 70–74 a linear decrease of incidence rate (95% CI) was observed in both sexes, higher for women: − 28.0% (− 36.2 to − 19.5) change vs − 18.8%, (− 32.6 to − 2.3). The abrupt turning point in the trend of ASIR of hip fractures in women is compatible with an intervention, such as a medication. The trends were different according to gender and age group, but compatible with the pattern of bisphosphonates sales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific research seminar within CICE mini summer school 25 june