897 resultados para Plastic Injection Molding
Resumo:
Semiconductor technology scaling has enabled drastic growth in the computational capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high bandwidth communication between ICs. Electrical channel bandwidth has not been able to keep up with this demand, making I/O link design more challenging. Interconnects which employ optical channels have negligible frequency dependent loss and provide a potential solution to this I/O bandwidth problem. Apart from the type of channel, efficient high-speed communication also relies on generation and distribution of multi-phase, high-speed, and high-quality clock signals. In the multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. However, its small locking range has been a major contributor in preventing its ubiquitous acceptance.
In the first part of this dissertation we describe a wideband injection locking scheme in an LC oscillator. Phase locked loop (PLL) and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter. This method does not require a phase frequency detector or a loop filter to achieve phase lock. A mathematical analysis of the system is presented and the expression for new locking range is derived. A locking range of 13.4 GHz–17.2 GHz (25%) and an average jitter tracking bandwidth of up to 400 MHz are measured in a high-Q LC oscillator. This architecture is used to generate quadrature phases from a single clock without any frequency division. It also provides high frequency jitter filtering while retaining the low frequency correlated jitter essential for forwarded clock receivers.
To improve the locking range of an injection locked ring oscillator; QLL (Quadrature locked loop) is introduced. The inherent dynamics of injection locked quadrature ring oscillator are used to improve its locking range from 5% (7-7.4GHz) to 90% (4-11GHz). The QLL is used to generate accurate clock phases for a four channel optical receiver using a forwarded clock at quarter-rate. The QLL drives an injection locked oscillator (ILO) at each channel without any repeaters for local quadrature clock generation. Each local ILO has deskew capability for phase alignment. The optical-receiver uses the inherent frequency to voltage conversion provided by the QLL to dynamically body bias its devices. A wide locking range of the QLL helps to achieve a reliable data-rate of 16-32Gb/s and adaptive body biasing aids in maintaining an ultra-low power consumption of 153pJ/bit.
From the optical receiver we move on to discussing a non-linear equalization technique for a vertical-cavity surface-emitting laser (VCSEL) based optical transmitter, to enable low-power, high-speed optical transmission. A non-linear time domain optical model of the VCSEL is built and evaluated for accuracy. The modelling shows that, while conventional FIR-based pre-emphasis works well for LTI electrical channels, it is not optimum for the non-linear optical frequency response of the VCSEL. Based on the simulations of the model an optimum equalization methodology is derived. The equalization technique is used to achieve a data-rate of 20Gb/s with power efficiency of 0.77pJ/bit.
Resumo:
This report presents the results of an investigation of a method of underwater propulsion. The propelling system utilizes the energy of a small mass of expanding gas to accelerate the flow of a large mass of water through an open ended duct of proper shape and dimensions to obtain a resultant thrust. The investigation was limited to making a large number of runs on a hydroduct of arbitrary design, varying between wide limits the water flow and gas flow through the device, and measuring the net thrust caused by the introduction and expansion of the gas.
In comparison with the effective exhaust velocity of about 6,000 feet per second observed in rocket motors, this hydroduct model attained a maximum effective exhaust velocity of more than 27,000 feet per second, using nitrogen gas. Using hydrogen gas, effective exhaust velocities of 146,000 feet per second were obtained. Further investigation should prove this method of propulsion not only to be practical but very efficient.
This investigation was conducted at Project No. 1, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California.
Resumo:
Gaseous nitrogen and argon were injected into a primary stream of air moving at Mach 2.56. The gases were injected at secondary to primary total pressure ratios from 3.2 to 28.6 through four different nozzles. Two nozzles, one sonic and one supersonic (M = 3.26), injected normal to the primary stream; and two sonic nozzles injected at 45° angles to the primary flow, one injecting upstream and the other downstream. Data consisted of static pressure measurements on the wall near the injector, total pressure profiles in the wake of the injectant plume, and concentration measurements downstream of the flow. Scale parameters were calculated based upon an analytical model of the flow field and their validity verified by experimental results. These scale heights were used to compare normalized wall side forces for the different nozzles and to compare the mixing of the two streams.
Resumo:
We have found that the optical power of a laser diode (LD) does not change with the injected light intensity that is modulated when its injection current is at some specific values. The amplitude of optical power change of the LD varies periodically with the increase of the injection current. It is made clear through theoretical analysis that these phenomena are caused by gain compression and interband carrier absorption of the LD that depend on longitudinal mode competition, bandgap-shrinkage effects, thermal conduction, and so on. Our experimental results make it easy to eliminate optical power change of LDs. We only need to choose a proper value of the injection current. (c) 2005 Optical Society of America.
Resumo:
A dissolved oxygen sensor made of plastic optical fiber as the substrate and dichlorotris (1, 10-phenanthroline) ruthenium as a fluorescence indicator is studied. Oxygen quenching characteristics of both intensity and phase were measured; the obtained characteristics showed deviation from the linear relation described by the Stern-Volmer equation. A two-layer model is proposed to explain the deviation, and main parameters can be deduced with the model. (C) 2009 Optical Society of America
Resumo:
Repetition rate fluctuation is one of the main drawbacks of the low-threshold stimulated Brillouin scattering (SBS) Q-switched fiber laser. A method to stabilize the repetition rate is proposed in this paper by injecting a square-wave modulated light. It is measured experimentally that variance of the repetition rate can be improved from similar to 20% to similar to 1% of the period. It is also found that effectiveness of the method depends on modulation frequency and duty cycle of the injection. Its working mechanism is analyzed qualitatively. (C) 2009 Optical Society of America
Resumo:
In this letter, we present an all solid-state, injection-seeded Ti:sapphire laser. The laser is pumped by a laser diode pumped frequency-doubled Nd:YAG laser, and injection-seeded by an external cavity laser diode with the wavelength between 770 and 780 nm. The single longitude mode and the doubling efficiency of the laser are obtained after injection seeding. The experimental setup and relative results are reported. It is a good candidate laser source for mobile differential absorption lidar (DIAL) system.
Resumo:
A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.