906 resultados para Plasma-materials interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the successful completion of the cooling storage ring (CSR) project in China at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV/u have been available at the Heavy Ion Research Facility at Lanzhou (HIRFL). More than 10(9) 1 GeVlu C6+ particles or 10(8) 235 MeV/u Xe particles can be stored in the CSR main-ring and extracted within hundred nano-seconds during the test running, the beam parameters will be improved in the coming years so that high energy density (HED) conditions could be achieved and investigated there. Recent scientific results from the experiments relevant to plasma research on HIRFL are summarized. Dense plasma research with intense heavy ion beams of CSR is proposed here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiolysis of cysteine under plasma discharge and irradiation of low-energy Ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR In addition, the generation of hydrogen sulfide was also identified The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH3, -COO-) of cysteine. and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation (C) 2010 Elsevier B V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the recent progress made in the asymmetric synthesis on chiral catalysts in porous materials and discusses the effects of surface and pores on enantio-selectivity (confinement effect). This paper also summarizes various approaches of immobilization of the chiral catalysts onto surfaces and into pores of solid inorganic supports such as microporous and mesoporous materials. The most important reactions surveyed for the chiral synthesis in porous materials include epoxidation. hydrogenation, hydroformylation, Aldol and Diels-Alder reactions, etc. The confinement effect originated from the surfaces and the pores turns out to be a general phenomenon. which may make the enantioselectivity increase (positive effect) or decrease (negative effect). The confinement effect becomes more pronounced particularly when the bonding between the catalyst and the surface is more rigid and the pore size is tuned to a suitable range. It is proposed that the confinement in chiral synthesis is essentially a consequence of subtle change in transition states induced by weak-interaction in pores or on surfaces. It is also anticipated that the enantioselectivity could be improved by tuning the confinement effect based on the molecular designing of the pore/surface and the immobilized catalysts according to the requirements of chiral reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a simple and effective supramolecular route for facile synthesis of submicrometer-scale, hierarchically self-assembled spherical colloidal particles of adenine - gold(III) hybrid materials at room temperature. Simple mixture of the precursor aqueous solutions of adenine and HAuCl4 at room temperature could result in spontaneous formation of the hybrid colloidal particles. Optimization of the experimental conditions could yield uniform-sized, self-assembled products at 1:4 molar ration of adenine to HAuCl4. Transmission electron microscopy results reveal the formation of hierarchical self-assembled structure of the as-prepared colloidal particles. Concentration dependence, ratio dependence, time dependence, and kinetic measurements have been investigated. Moreover, spectroscopic evidence [i.e., Fourier transform infrared (FTIR) and UV-vis spectra and wide-angle X-ray scattering data] of the interaction motives causing the formation of the colloidal particles is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper summarizes the basic properties of ceramic materials for thermal barrier coatings. Ceramics, in contrast to metals, are often more resistant to oxidation, corrosion and wear, as well as being better thermal insulators. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrathin multilayers films consisting of Keggin anion [PMo12O40](3-) and diazo resin were first prepared by the electrostatic layer-by-layer self-assembly method. This film material could be stabilized by the photoinduced interaction between Keggin anion and diazo resin. IR spectra and X-ray photoelectron spectra revealed the occurrence of the partial transformation from ionic bond to covalent bond between layers of the film under irradiation by UV light. Such transformation increases the stability of the film, which was demonstrated by AFM images and the etching experiments with organic solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the determination of Au, Pt and Pd in geological samples is described. Au, Pt and Pd can be separated and concentrated quantitatively by C-410 anion-exchange resin in the condition of 1.5 mol/L HCl with the adsorption rates of 91.2%, 100.0% and 95.7% respectively. No interference exists from coexisting elements except for Ge(IV), Cr(VI),Ti(IV) in inductively coupled plasma-mass spectrometry. The detection limits are 0.27 mug/L, 0.40 mug/L and 0.19 mug/L for Au, Pt and Pd respectively. The results of these elements in standard geological materials are in agreement with certified values with precision of 19.2% RSD for Au (n = 8), 28.1% RSD for Pt (n=8), and 15.6% RSD for Pd (n=8).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of lanthanum ions on the activity of the cytoplasmic domain of human erythrocyte band 3 (CDB3), which was measured according to the inhibition to aldolase, was studied. In the presence of low concentration of lanthanum ions, the function of CDB3 to inhibit aldolase activity decreased significantly. It indicated that lanthanum ions in the erythrocyte would change the conformation of CDB3 and influence the control on aldolase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method was developed for the determination of total mercury in biological samples. The effects of aqueous ammonia, ethylenediamine and triethanolamine on Hg signal intensity by inductively coupled plasma mass spectrometry has been evaluated and the possible mechanisms discussed. It has been proved that the signal intensity of Hg significantly increases with adding, in the presence of small amounts of aqueous ammonia, ethylenediamine or triethanolamine. The normalized intensity (the signal intensity ratio with amine and without amine) of Hg increases as the concentration of aqueous ammonia, ethylenediamine or triethanolamine increases, but the degree of enhancement of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The normalized intensity of Hg with aqueous ammonia, ethylenediamine and triethanolamine decreases as the nebulizer flow rate increases, but decreasing degree of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The higher the RF powers the higher the normalized intensity of Hg at the same nebulizer flow rate. The addition of aqueous ammonia, ethylenediamine and triethanolamine into analytical solutions significantly improved the transport efficiency of Hg. The detection limit of Hg is improved about ten times by the addition of ethylenediamine or triethanolamine under the optimum experimental parameters. The method has been used to determine mercury in biological standard reference materials (SRM). The analytical results are very close to the certified values and the determined values for similar samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, hydrophilic microporous cellulose nitrate membranes have been surface-modified by plasma polymerization of octafluorocyclobutane (OFCB). The microporous composite membranes with a hydrophilic layer sandwiched between two hydrophobic layers have been obtained. The obtained composite membranes have been used in a membrane distillation (MD) process and have exhibited good performance. The effects of polymerization conditions, such as glow-discharge power and deposition time, on the structures and MD performances of the obtained composite membranes have been investigated by SEM, X-ray microscopical analysis, and XPS. The polymerization conditions should be as mild as possible in order to prepare the hydrophobic composite membrane with good MD performance. The typical MD behaviors of the obtained hydrophobic composite membranes are in agreement with that of hydrophobic membranes directly prepared from hydrophobic polymeric materials, like PVDF, PTFE, or PP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dibenzodioxin adsorption/desorption on solid surfaces is an important issue associated with the formation, adsorption, and emission of dioxins. Dibenzodioxin adsorption/desorption behaviors on inorganic materials (amorphous/mesoporous silica, metal oxides, and zeolites) were investigated using in situ FT-IR spectroscopy and thermogravimetric (TG) analysis. Desorption temperatures of adsorbed dibenzodioxin are very different for different kinds of inorganic materials: similar to 200 degrees C for amorphous/mesoporous silica, similar to 230 degrees C for metal oxides, and similar to 450 degrees C for NaY and mordenite zeolites. The adsorption of dibenzodioxin can be grouped into three categories according to the red shifts of the IR band at 1496 cm(-1) of the aromatic ring for the adsorbed dibenzodioxin: a shift of 6 cm-1 for amorphous/mesoporous silica, a shift of 10 cm(-1) for metal oxides, and a shift of 14 cm(-1) for NaY and mordenite, suggesting that the IR shifts are proposed to associated with the strength of the interaction between adsorbed dibenzodioxin and the inorganic materials. It is proposed that the dibenzodioxin adsorption is mainly via the following three interactions: hydrogen bonding with the surface hydroxyl groups on amorphous/mesoporous silica, complexation with Lewis acid sites on metal oxides, and confinement effect of pores of mordenite and NaY with pore size close to the molecular size of dibenzodioxin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of traditional Chinese Herb Rhizoma Chuanxiong and protein was studied by microdialysis coupled with high performance liquid chromatography. Compounds in Rhizoma Chuanxiong, such as ferulic acid, senkyunolide A and 3-butylphthalide, were identified by HPLC, HPLC-MS and UV-vis. Microdialysis recoveries and binding degrees of compounds in Rhizoma Chuanxiong with human serum albumin (HSA) and other human plasma protein were determined: recoveries of microdialysis sampling ranged from 36.7 to 98.4% with R.S.D. below 3.1%; while binding to HSA ranged from 0 to 91.5% (0.3 mM HSA) and from 0 to 93.5% (0.6 mM HSA), respectively. Compared with HSA, most of compounds bound to human blood serum more extensively and the results showed that binding of these compounds in Rhizoma Chuanxiong was influenced by pH. Two compounds were found to bind to HSA and human blood serum. their binding degrees were consistent with ferulic acid and 3-butylphthalide, the active compounds in Rhizoma Chuanoxiong. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes modelling, synthesis, spectroscopic and physical characterisation, as well as application of Magnesium, Calcium and Copper β-diketonate, β-ketoiminate, β-diiminate, Schiff base, amide and fluorenyl compounds. The selected compounds could potentially find application in materials deposition using Atomic Layer Deposition (ALD), MOCVD, CVD and Sol-Gel techniques. Quantum chemical modelling was used as a tool to perform the comprehensive and rapid study of magnesium and calcium precursor molecules in order to predict which of them would be more successful in ALD of metal oxides. Precursor chemistry plays a key role in ALD, since precursors must be volatile, thermally stable, chemisorb on the surface and react rapidly with existing surface groups. This Thesis describes one aspect of this, surface reactivity between ligands and hydroxyl groups, via a gas-phase model with energetics computed at the level of Density Functional Theory (DFT). A number of different synthetic strategies, both aerobic and anaerobic, were investigated for the synthesis of the described metal complexes. These included the use of different metal starting reagents such as, anhydrous and hydrated inorganic metal salts, metal alkyls and Grignard reagents. Some of previously unreported metal complexes of homoleptic and heteroleptic magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, amides and Schiff base type were synthesised and characterised: [Mg(hfpd)2(DipPa)], [Mg(hfpd)2(MapH)2], [Mg(hf-ebp)(THF)2], [Mg(tf-Pap)Cl(THF)2], [Ca(PhNacnac)2], [Cu(tf-Pap)2], [Cu(PhNacnac)2], [Cu(hf-ebp)], [Cu(DipPa)] and [Cu(DipPa)2(4,4’-bypy)]. A comprehensive study on the thermal properties of magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, Schiff base, amide and fluorenyl complexes was performed using TGA and sublimation of selected compounds. Atomic Layer Deposition of MgO using magnesium β-ketoiminate – [bis{(4-N-phenyl)-2-pentonato} magnesium] and β-diketonate - [bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)(THF)magnesium hydrate] was performed on Si(100) substrates at 180°C and 0.2 Torr using O2 plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The confinement of fast particles, present in a tokamak plasma as nuclear fusion products and through external heating, will be essential for any future fusion reactor. Fast particles can be expelled from the plasma through their interaction with Alfvén eigenmode (AE) instabilities. AEs can exist in gaps in the Alfvén continuum created by plasma equilibrium non-uniformities. In the ASDEX Upgrade tokamak, low-frequency modes in the frequency range from f ≈ 10 − 90kHz, including beta-induced Alfvén eigenmodes (BAEs) and lower frequency modes with mixed Alfvén and acoustic polarisations, have been observed. These exist in gaps in the Alfvén continuum opened up by geodesic curvature and finite plasma compressibility. In this thesis, a kinetic dispersion relation is solved numerically to investigate the influence of thermal plasma profiles on the evolution of these low-frequency modes during the sawtooth cycle. Using information gained from various experimental sources to constrain the equilibrium reconstructions, realistic safety factor profiles are obtained for the analysis using the CLISTE code. The results for the continuum accumulation point evolution are then compared with experimental results from ASDEX Upgrade during periods of ICRH only as well as for periods with both ICRH and ECRH applied simultaneously. It is found that the diamagnetic frequency plays an important role in influencing the dynamics of BAEs and low-frequency acoustic Alfvén eigenmodes, primarily through the presence of gradients in the thermal plasma profiles. Different types of modes that are observed during discharges heated almost exclusively by ECRH were also investigated. These include electron internal transport barrier (eITB) driven modes, which are observed to coincide with the occurrence of an eITB in the plasma during the low-density phase of the discharge. Also observed are BAE-like modes and edge-TAEs, both of which occur during the H-mode phase of the discharge.