968 resultados para Plant pathogen defense


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of abscisic acid (ABA) on the accumulation of proteinase inhibitors I (Inh I) and II (Inh II) in young, excised tomato (Lycopersicon esculentum L.) plants were investigated. When supplied to excised plants through the cut stems, 100 μm ABA induced the activation of the ABA-responsive le4 gene. However, under the same conditions of assay, ABA at concentrations of up to 100 μm induced only low levels of proteinase-inhibitor proteins or mRNAs, compared with levels induced by systemin or jasmonic acid over the 24 h following treatment. In addition, ABA only weakly induced the accumulation of mRNAs of several other wound-response proteins. Assays of the ABA concentrations in leaves following wounding indicated that the ABA levels increased preferentially near the wound site, suggesting that ABA may have accumulated because of desiccation. The evidence suggests that ABA is not a component of the wound-inducible signal transduction pathway leading to defense gene activation but is likely involved in the general maintenance of a healthy plant physiology that facilitates a normal wound response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor L. Moench) accumulates the anthocyanin cyanidin 3-dimalonyl glucoside in etiolated mesocotyls in response to light. Inoculation with the nonpathogenic fungus Cochliobolus heterostrophus drastically reduced the light-induced accumulation of anthocyanin by repressing the transcription of the anthocyanin biosynthesis genes encoding flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. In contrast to these repression effects, fungal inoculation resulted in the synthesis of the four known 3-deoxyanthocyanidin phytoalexins and a corresponding activation of genes encoding the key branch-point enzymes in the phenylpropanoid pathway, phenylalanine ammonia-lyase and chalcone synthase. In addition, a gene encoding the pathogenesis-related protein PR-10 was strongly induced in response to inoculation. The accumulation of phytoalexins leveled off by 48 h after inoculation and was accompanied by a more rapid increase in the rate of anthocyanin accumulation. The results suggest that the plant represses less essential metabolic activities such as anthocyanin synthesis as a means of compensating for the immediate biochemical and physiological needs for the defense response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of the ascorbate-glutathione cycle was investigated in roots of young wheat (Triticum aestivum L.) seedlings that were deprived of oxygen either by subjecting them to root hypoxia or to entire plant anoxia and then re-aerated. Although higher total levels of ascorbate and glutathione were observed under hypoxia, only the total amount of ascorbate was increased under anoxia. Under both treatments a significant increase in the reduced form of ascorbate and glutathione was found, resulting in increased reduction states. Upon the onset of re-aeration the ratios started to decline rapidly, indicating oxidative stress. Hypoxia caused higher activity of ascorbate peroxidase, whereas activities of monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase were diminished or only slightly influenced. Under anoxia, activities of ascorbate peroxidase and glutathione reductase decreased significantly to 39 and 62%, respectively. However, after re-aeration of hypoxically or anoxically pretreated roots, activity of enzymes approached the control levels. This corresponds with the restoration of the high reduction state of ascorbate and glutathione within 16 to 96 h of re-aeration, depending on the previous duration of anoxia. Apparently, anoxia followed by re-aeration more severely impairs entire plant metabolism compared with hypoxia, thus leading to decreased viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the antioxidative defense responses of transgenic tobacco (Nicotiana tabacum) plants expressing antisense RNA for uroporphyrinogen decarboxylase or coproporphyrinogen oxidase. These plants are characterized by necrotic leaf lesions resulting from the accumulation of potentially photosensitizing tetrapyrroles. Compared with control plants, the transformants had increased levels of antioxidant mRNAs, particularly those encoding superoxide dismutase (SOD), catalase, and glutathione peroxidase. These elevated transcript levels correlated with increased activities of cytosolic Cu/Zn-SOD and mitochondrial Mn-SOD. Total catalase activity decreased in the older leaves of the transformants to levels lower than in the wild-type plants, reflecting an enhanced turnover of this photosensitive enzyme. Most of the enzymes of the Halliwell-Asada pathway displayed increased activities in transgenic plants. Despite the elevated enzyme activities, the limited capacity of the antioxidative system was apparent from decreased levels of ascorbate and glutathione, as well as from necrotic leaf lesions and growth retardation. Our data demonstrate the induction of the enzymatic detoxifying defense system in several compartments, suggesting a photosensitization of the entire cell. It is proposed that the tetrapyrroles that initially accumulate in the plastids leak out into other cellular compartments, thereby necessitating the local detoxification of reactive oxygen species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydroperoxide lyases (HPLs) catalyze the cleavage of fatty acid hydroperoxides to aldehydes and oxoacids. These volatile aldehydes play a major role in forming the aroma of many plant fruits and flowers. In addition, they have antimicrobial activity in vitro and thus are thought to be involved in the plant defense response against pest and pathogen attack. An HPL activity present in potato leaves has been characterized and shown to cleave specifically 13-hydroperoxides of both linoleic and linolenic acids to yield hexanal and 3-hexenal, respectively, and 12-oxo-dodecenoic acid. A cDNA encoding this HPL has been isolated and used to monitor gene expression in healthy and mechanically damaged potato plants. HPL gene expression is subject to developmental control, being high in young leaves and attenuated in older ones, and it is induced weakly by wounding. HPL enzymatic activity, nevertheless, remains constant in leaves of different ages and also after wounding, suggesting that posttranscriptional mechanisms may regulate its activity levels. Antisense-mediated HPL depletion in transgenic potato plants has identified this enzyme as a major route of 13-fatty acid hydroperoxide degradation in the leaves. Although these transgenic plants have highly reduced levels of both hexanal and 3-hexenal, they show no phenotypic differences compared with wild-type ones, particularly in regard to the expression of wound-induced genes. However, aphids feeding on the HPL-depleted plants display approximately a two-fold increase in fecundity above those feeding on nontransformed plants, consistent with the hypothesis that HPL-derived products have a negative impact on aphid performance. Thus, HPL-catalyzed production of C6 aldehydes may be a key step of a built-in resistance mechanism of plants against some sucking insect pests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tobacco plants were transformed with a cDNA clone of chymotrypsin/trypsin-specific potato proteinase inhibitor II (PI2) under the control of a constitutive promoter. Although considerable levels of transgene expression could be demonstrated, the growth of Spodoptera exigua larvae fed with detached leaves of PI2-expressing plants was not affected. Analysis of the composition of tryptic gut activity demonstrated that only 18% of the proteinase activity of insects reared on these transgenic plants was sensitive to inhibition by PI2, whereas 78% was sensitive in insects reared on control plants. Larvae had compensated for this loss of tryptic activity by a 2.5-fold induction of new activity that was insensitive to inhibition by PI2. PI2-insensitive proteolytic activity was also induced in response to endogenous proteinase inhibitors of tobacco; therefore, induction of such proteinase activity may represent the mechanism by which insects that feed on plants overcome plant proteinase inhibitor defense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have employed Arabidopsis thaliana as a model host plant to genetically dissect the molecular pathways leading to disease resistance. A. thaliana accession Col-0 is susceptible to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 but resistant in a race-specific manner to DC3000 carrying any one of the cloned avirulence genes avrB, avrRpm1, avrRpt2, and avrPph3. Fast-neutron-mutagenized Col-0 M2 seed was screened to identify mutants susceptible to DC3000(avrB). Disease assays and analysis of in planta bacterial growth identified one mutant, ndr1-1 (nonrace-specific disease resistance), that was susceptible to DC3000 expressing any one of the four avirulence genes tested. Interestingly, a hypersensitive-like response was still induced by several of the strains. The ndr1-1 mutation also rendered the plant susceptible to several avirulent isolates of the fungal pathogen Peronospora parasitica. Genetic analysis of ndr1-1 demonstrated that the mutation segregated as a single recessive locus, located on chromosome III. Characterization of the ndr1-1 mutation suggests that a common step exists in pathways of resistance to two unrelated pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jasmonic acid, synthesized from linolenic acid (the octadecanoid pathway), has been proposed to be part of a signal transduction pathway that mediates the induction of defensive genes in plants in response to oligouronide and polypeptide signals generated by insect and pathogen attacks. We report here that the induction of proteinase inhibitor accumulation in tomato leaves by plant-derived oligogalacturonides and fungal-derived chitosan oligosaccharides is severely reduced by two inhibitors (salicylic acid and diethyldi-thiocarbamic acid) of the octadecanoid pathway, supporting a role for the pathway in signaling by oligosaccharides. Jasmonic acid levels in leaves of tomato plants increased several fold within 2 hr after supplying the polypeptide systemin, oligogalacturonides, or chitosan to the plants through their cut stems, as expected if they utilize the octadecanoid pathway. The time course of jasmonic acid accumulation in tomato leaves in response to wounding was consistent with its proposed role in signaling proteinase inhibitor mRNA and protein synthesis. The cumulative evidence supports a model for the activation of defensive genes in plants in response to insect and pathogen attacks in which various elicitors generated at the attack sites activate the octadecanoid pathway via different recognition events to induce the expression of defensive genes in local and distal tissues of the plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidative burst is likely the most rapid defense response mounted by a plant under pathogen attack, and the generated oxidant species may be essential to several subsequent defense responses. In our effort to characterize the signal-transduction pathways leading to rapid H2O2/O2- biosynthesis, we have examined the role of protein phosphorylation in this resistance mechanism. K-252a and staurosporine, two protein-kinase inhibitors, were found to block the oxidative burst in a concentration-dependent manner. When added during H2O2 generation, the burst was observed to rapidly terminate, suggesting that continuous phosphorylation was essential for its maintenance. Importantly, phosphatase inhibitors (calyculin A and okadaic acid) were found to induce the oxidative burst in the absence of any additional stimulus. This may suggest that certain kinases required for the burst are constitutively active and that stabilization of the phosphorylated forms of their substrates is all that is required for burst activity. In autoradiographs of elicited and unstimulated cells equilibrated with 32PO4(3-), several phosphorylated polypeptide bands were revealed that could represent proteins essential for the burst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligogalacturonides are plant cell wall-derived regulatory molecules which stimulate defense gene expression during pathogenesis. In vitro, these compounds enhance the phosphorylation of an approximately 34-kDa protein (pp34) in purified plasma membranes from potato and tomato leaves. We now show that polygalacturonate-enhanced phosphorylation of pp34 occurs in plasma membranes purified from tomato roots, hypocotyls, and stems and from undifferentiated potato cells. Furthermore, a similar phosphorylation is detected in leaf plasma membranes from soybean, a plant distantly related to tomato. Purified oligogalacturonides 13 to at least 26 residues long stimulate pp34 thiophosphorylation in vitro. This stimulation pattern differs from the induction of many known defense responses in vivo, where a narrower range of smaller fragments, between approximately 10 and 15 residues long, are active. On the basis of these differences we suggest that observed effects of applied exogenous oligogalacturonides on defense responses may not necessarily reflect the situation during pathogenesis. The cell wall could act as a barrier to many exogenous oligo- and polygalacturonides as well as other large regulatory ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used suspension-cultured parsley cells (Petroselinum crispum) and an oligopeptide elicitor derived from a surface glycoprotein of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea to study the signaling pathway from elicitor recognition to defense gene activation. Immediately after specific binding of the elicitor by a receptor in the plasma membrane, large and transient increases in several inorganic ion fluxes (Ca2+, H+, K+, Cl-) and H2O2 formation are the first detectable plant cell responses. These are rapidly followed by transient changes in the phosphorylation status of various proteins and by the activation of numerous defense-related genes, concomitant with the inactivation of several other, non-defense-related genes. A great diversity of cis-acting elements and trans-acting factors appears to be involved in elicitor-mediated gene regulation, similar to the apparently complex nature of the signal transduced intracellularly. With few exceptions, all individual defense responses analyzed in fungus-infected parsley leaves have been found to be closely mimicked in elicitor-treated, cultured parsley cells, thus validating the use of the elicitor/cell culture system as a valuable model system for these types of study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic acquired resistance (SAR) is an important component of plant defense against pathogen infection. Accumulation of salicylic acid (SA) is required for the induction of SAR. However, SA is apparently not the translocated signal but is involved in transducing the signal in target tissues. Interestingly, SA accumulation is not required for production and release of the systemic signal. In addition to playing a pivotal role in SAR signal transduction, SA is important in modulating plant susceptibility to pathogen infection and genetic resistance to disease. It has been proposed that SA inhibition of catalase results in H2O2 accumulation and that therefore H2O2 serves as a second messenger in SAR signaling. We find no accumulation of H2O2 in tissues expressing SAR; thus the role of H2O2 in SAR signaling is questionable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants can defend themselves from potential pathogenic microorganisms relying on a complex interplay of signaling pathways: activation of the MAPK cascade, transcription of defense related genes, production of reactive oxygen species, nitric oxide and synthesis of other defensive compounds such as phytoalexins. These events are triggered by the recognition of pathogen’s effectors (effector-triggered immunity) or PAMPs (PAMP-triggered immunity). The Cerato Platanin Family (CPF) members are Cys-rich proteins secreted and localized on fungal cell walls, involved in several aspects of fungal development and pathogen-host interactions. Although more than hundred genes of the CPF have been identified and analyzed, the structural and functional characterization of the expressed proteins has been restricted only to few members of the family. Interestingly, those proteins have been shown to bind chitin with diverse affinity and after foliar treatment they elicit defensive mechanisms in host and non-host plants. This property turns cerato platanins into interesting candidates, worth to be studied to develop new fungal elicitors with applications in sustainable agriculture. This study focus on cerato-platanin (CP), core member of the family and on the orthologous cerato-populin (Pop1). The latter shows an identity of 62% and an overall homology of 73% with respect to CP. Both proteins are able to induce MAPKs phosphorylation, production of reactive oxygen species and nitric oxide, overexpression of defense’s related genes, programmed cell death and synthesis of phytoalexins. CP, however, when compared to Pop1, induces a faster response and, in some cases, a stronger activity on plane leaves. Aim of the present research is to verify if the dissimilarities observed in the defense elicitation activity of these proteins can be associated to their structural and dynamic features. Taking advantage of the available CP NMR structure, Pop1’s 3D one was obtained by homology modeling. Experimental residual dipolar couplings and 1H, 15N, 13C resonance assignments were used to validate the model. Previous works on CPF members, addressed the highly conserved random coil regions (loops b1-b2 and b2-b3) as sufficient and necessary to induce necrosis in plants’ leaves: that region was investigated in both Pop1 and CP. In the two proteins the loops differ, in their primary sequence, for few mutations and an insertion with a consequent diversification of the proteins’ electrostatic surface. A set of 2D and 3D NMR experiments was performed to characterize both the spatial arrangement and the dynamic features of the loops. NOE data revealed a more extended network of interactions between the loops in Pop1 than in CP. In addition, in Pop1 we identified a salt bridge Lys25/Asp52 and a strong hydrophobic interaction between Phe26/Trp53. These structural features were expected not only to affect the loops’ spatial arrangement, but also to reduce the degree of their conformational freedom. Relaxation data and the order parameter S2 indeed highlighted reduced flexibility, in particular for loop b1-b2 of Pop1. In vitro NMR experiments, where Pop1 and CP were titrated with oligosaccharides, supported the hypothesis that the loops structural and dynamic differences may be responsible for the different chitin-binding properties of the two proteins: CP selectively binds tetramers of chitin in a shallow groove on one side of the barrel defined by loops b1-b2, b2-b3 and b4-b5, Pop1, instead, interacts in a non-specific fashion with oligosaccharides. Because the region involved in chitin-binding is also responsible for the defense elicitation activity, possibly being recognized by plant's receptors, it is reasonable to expect that those structural and dynamic modifications may also justify the different extent of defense elicitation. To test that hypothesis, the initial steps of a protocol aimed to the identify a receptor for CP, in silico, are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Espécies de Phytophthora tem se destacado ao longo da história devido ao seu potencial destrutivo, se iniciando com a devastadora P. infestans na Irlanda e se estende até os dias de hoje com P. nicotianae em citros e P. plurivora em faia. Uma característica importante deste grupo de patógenos é que as medidas de controle da doença se baseiam na prevenção da entrada do patógeno na área visto que, uma vez instalado, o produtor precisa conviver com o mesmo, pois não se dispõem de métodos efetivos de controle. Neste sentido, a busca por métodos de controle torna-se primordial. O endofítico radicular Piriformospora indica, tem-se destacado em vários patossistemas devido a sua habilidade de induzir resistência contra patógenos, aumentar a tolerância à estresses abióticos e promover o crescimento de plantas. Taxtomina A, produzida por Streptomyces scabies, é capaz de ativar mecanismos de defesa de plantas, os quais são efetivos contra agentes patogênicos. Objetivou-se com este trabalho avaliar o efeito de P. indica e da taxtomina A sobre P. nicotianae em citros e P. plurivora em faia. Ambos foram avaliados quanto ao seu efeito direto sobre os patógenos em questão. O indutor de defesa vegetal Bion® foi utilizado em alguns ensaios para fins de comparação. Plântulas de citros e faia foram tratadas com concentrações crescentes de taxtomina e parâmetros fisiológicos, bioquímicos e de controle da doença foram avaliados. Taxtomina A não apresenta efeito direto sobre os patógenos avaliados. Os dados de incidência da doença em plântulas de faia tratadas com taxtomina A nas concentrações de 10, 25, 50 e 100 μg se mostraram consistentes com a quantidade de DNA do patógeno no sistema radicular, demonstrando que, aparentemente, a toxina induziu suscetibilidade nas plântulas de faia. Em citros, para os parâmetros fisiológicos e bioquímicos avaliados, em linhas gerais, a taxtomina A nas concentrações de 50 e 100 μg demonstrou potencial de aplicação no patossistema citros - P. nicotianae. Quando avaliada a mortalidade de plantas inoculadas com o patógeno e tratadas com taxtomina, bem como, quando quantificado o DNA do oomiceto no sistema radicular, as referidas concentrações também apresentaram os melhores desempenhos. Plântulas das mesmas espécies foram submetidas a inoculação com P. indica, sendo avaliados os efeitos na promoção de crescimento, na atividade de enzimas e de genes relacionados ao processo de defesa, bem como, no controle da doença. Não foi observado efeito direto do endofítico radicular sobre os patógenos avaliados. Quando plântulas de citros foram inoculadas com P. indica e depois com P. nicotianae, não foi observada promoção de crescimento e controle da doença. As análises histológicas e moleculares demonstraram a presença do endofítico no sistema radicular de plântulas de citros e faia. Análises bioquímicas revelaram apenas aumentos pontuais no teor de proteínas e na atividade da β-1,3-glucanase e da peroxidase no tratamento com P. indica + P. nicotianae. Os genes PR-1.4, PR-1.8, PR-β-glucosidase e Hsp70 foram induzidos em plântulas inoculadas com P. indica e com o patógeno, bem como no tratamento com Bion® e patógeno, porém em menor magnitude. O endofítico P. indica ativa o sistema de defesa de plântulas de citros, no entanto, os mecanismos ativados não são efetivos para o controle da doença na interação citros - P. nicotianae.