991 resultados para Plane Fracture Problem
Resumo:
Identification of the tensile constitutive behaviour of Fibre Reinforced Concrete (FRC) represents an important aspect of the design of structural elements using this material. Although an important step has been made with the introduction of guidance for the design with regular FRC in the recently published fib Model Code 2010, a better understanding of the behaviour of this material is still necessary, mainly for that with self-compacting properties. This work presents an experimental investigation employing Steel Fibre Self-Compacting Concrete (SFRSCC) to cast thin structural elements. A new test method is proposed for assessing the post-cracking behaviour and the results obtained with the proposed test method are compared with the ones resulted from the standard three-point bending tests (3PBT). Specimens extracted from a sandwich panel consisting of SFRSCC layers are also tested. The mechanical properties of SFRSCC are correlated to the fibre distribution by analysing the results obtained with the different tests. Finally, the stress-crack width constitutive law proposed by the fib Model Code 2010 is analysed in light of the experimental results.
Resumo:
The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.
Resumo:
Se propone desarrollar e integrar estudios sobre Modelado y Resolución de Problemas en Física que asumen como factores explicativos: características de la situación planteada, conocimiento de la persona que resuelve y proceso puesto en juego durante la resolución. Interesa comprender cómo los estudiantes acceden al conocimiento previo, qué procedimientos usan para recuperar algunos conocimientos y desechar otros, cuáles son los criterios que dan coherencia a sus decisiones, cómo se relacionan estas decisiones con algunas características de la tarea, entre otras. Todo ello con miras a estudiar relaciones causales entre las dificultades encontradas y el retraso o abandono en las carreras.Se propone organizar el trabajo en tres ejes, los dos primeros de construcción teórica y un tercero de implementación y transferencia. Se pretende.1.-Estudiar los procesos de construcción de las representaciones mentales en resolución de problemas de física, tanto en expertos como en estudiantes de diferentes niveles académicos.2.-Analizar y clasificar las inferencias que se producen durante las tareas de comprensión en resolución de problemas de física. Asociar dichas inferencias con procesos de transición entre representaciones mentales de diferente naturaleza.3.-Desarrollar materiales y diseños instruccionales en la enseñanza de la Física, fundamentado en un conocimiento de los requerimientos psicológicos de los estudiantes en diversas tareas de aprendizaje.En términos generales se plantea un enfoque interpretativo a la luz de marcos de la psicología cognitiva y de los desarrollos propios del grupo. Se trabajará con muestras intencionales de alumnos y profesores de física. Se utilizarán protocolos verbales y registros escritos producidos durante la ejecución de las tareas con el fin de identificar indicadores de comprensión, inferencias, y diferentes niveles de representación. Se prevé analizar material escrito de circulación corriente sea comercial o preparado por los docentes de las carreras involucradas.Las características del objeto de estudio y el distinto nivel de desarrollo en que se encuentran los diferentes ojetivos específicos llevan a que el abordaje contemple -según consideracion de Juni y Urbano (2006)- tanto la lógica cualitativa como la cuantitativa.
Resumo:
Identificación y caracterización del problema: El problema que guía este proyecto, pretende dar respuesta a interrogantes tales como: ¿De qué modo el tipo de actividades que se diseñan, se constituyen en dispositivos posibilitadores de la comprensión de los temas propios de cada asignatura, por parte de los alumnos? A partir de esta pregunta, surge la siguiente: Al momento de resolver las actividades, ¿qué estrategias cognitivas ponen en juego los estudiantes? y ¿cuáles de ellas favorecen procesos de construcción del conocimiento? Hipótesis: - Las asignaturas cuyas actividades están elaboradas bajo la metodología de Aprendizaje Basado en Problemas y Estudio de Casos, propician aprendizajes significativos por parte de los estudiantes. - Las actividades elaboradas bajo la metodología del Aprendizaje Basado en Problemas y el Estudio de Casos requieren de procesos cognitivos más complejos que los que se implementan en las de tipo tradicional. Objetivo: - Identificar el impacto que tienen las actividades de aprendizaje de tipo tradicional y las elaboradas bajo la metodología de Aprendizaje Basado en Problemas y Estudio de Casos, en el aprendizaje de los alumnos. Materiales y Métodos: a) Análisis de las actividades de aprendizaje del primero y segundo año de la carrera de Abogacía, bajo lamodalidad a Distancia. b) Entrevistas tanto a docentes contenidistas como así también a los tutores. c) Encuestas y entrevistas a los alumnos. Resultados esperados: Se pretende confirmar que las actividades de aprendizaje, diseñadas bajo la metodología del Aprendizaje Basado en Problemas y el Estudio de Casos, promueven aprendizajes significativos en los alumnos. Importancia del proyecto y pertinencia: La relevancia del presente proyecto se podría identificar a través de dos grandes variables vinculadas entre sí: la relacionada con el dispositivo didáctico (estrategias implementadas por los alumnos) y la referida a lo institucional (carácter innovador de la propuesta de enseñanza y posibilidad de extenderla a otras cátedras). El presente proyecto pretende implementar mejoras en el diseño de las actividades de aprendizaje, a fin de promover en los alumnos la generación de ideas y soluciones responsables y el desarrollo de su capacidad analítica y reflexiva.
Resumo:
In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2015
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Masterarbeit, 2016
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.
Resumo:
Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3–body problem. Additionally, we also continue to this restricted problem the so called “comets orbits”.
Resumo:
We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.
Resumo:
We say the endomorphism problem is solvable for an element W in a free group F if it can be decided effectively whether, given U in F, there is an endomorphism Φ of F sending W to U. This work analyzes an approach due to C. Edmunds and improved by C. Sims. Here we prove that the approach provides an efficient algorithm for solving the endomorphism problem when W is a two- generator word. We show that when W is a two-generator word this algorithm solves the problem in time polynomial in the length of U. This result gives a polynomial-time algorithm for solving, in free groups, two-variable equations in which all the variables occur on one side of the equality and all the constants on the other side.