996 resultados para Planar piecewise smooth vector fields
Resumo:
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.
Resumo:
The appearance of spin-1 resonances associated with the electroweak symmetry breaking sector is expected in many extensions of the standard model. We analyze the CERN Large Hadron Collider potential to probe the spin of possible new charged and neutral vector resonances through the purely leptonic processes pp -> Z' -> l(+) l'(-) E(T), and pp -> W' -> l'(+/-) l(+) l(-) E(T), with l, l' = e or mu. We perform a model-independent analysis and demonstrate that the spin of the new states can be determined with 99% C. L. in a large fraction of the parameter space where these resonances can be observed with 100 fb(-1). We show that the best sensitivity to the spin is obtained by directly studying correlations between the final state leptons, without the need of reconstructing the events in their center-of-mass frames.
Resumo:
Quantum field theories (QFT's) on noncommutative spacetimes are currently under intensive study. Usually such theories have world sheet noncommutativity. In the present work, instead, we study QFT's with commutative world sheet and noncommutative target space. Such noncommutativity can be interpreted in terms of twisted statistics and is related to earlier work of Oeckl [R. Oeckl, Commun. Math. Phys. 217, 451 (2001)], and others [A. P. Balachandran, G. Mangano, A. Pinzul, and S. Vaidya, Int. J. Mod. Phys. A 21, 3111 (2006); A. P. Balachandran, A. Pinzul, and B. A. Qureshi, Phys. Lett. B 634,434 (2006); A.P. Balachandran, A. Pinzul, B.A. Qureshi, and S. Vaidya, arXiv:hep-th/0608138; A.P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B.A. Qureshi, and S. Vaidya, Phys. Rev. D 75, 045009 (2007); A. Pinzul, Int. J. Mod. Phys. A 20, 6268 (2005); G. Fiore and J. Wess, Phys. Rev. D 75, 105022 (2007); Y. Sasai and N. Sasakura, Prog. Theor. Phys. 118, 785 (2007)]. The twisted spectra of their free Hamiltonians has been found earlier by Carmona et al. [J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, Phys. Lett. B 565, 222 (2003); J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, J. High Energy Phys. 03 (2003) 058]. We review their derivation and then compute the partition function of one such typical theory. It leads to a deformed blackbody spectrum, which is analyzed in detail. The difference between the usual and the deformed blackbody spectrum appears in the region of high frequencies. Therefore we expect that the deformed blackbody radiation may potentially be used to compute a Greisen-Zatsepin-Kuzmin cutoff which will depend on the noncommutative parameter theta.
Resumo:
We study the noncommutative massless Kalb-Ramond gauge field coupled to a dynamical U(1) gauge field in the adjoint representation together with a compensating vector field. We derive the Seiberg-Witten map and obtain the corresponding mapped action to first order in theta. The (emergent) gravity structure found in other situations is not present here. The off-shell dual scalar theory is derived and it does not coincide with the Seiberg-Witten mapped scalar theory. Dispersion relations are also discussed. The p-form generalization of the Seiberg-Witten map to order theta is also derived.
Resumo:
We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations. The conjecture states that the cover time tau (G(N)) of a planar graph G(N) of N vertices and maximal degree d is lower bounded by tau (G(N)) >= C(d)N(lnN)(2) with C(d) = (d/4 pi) tan(pi/d), with equality holding for some geometries. We tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular (d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (d(min) = 4, d(max) = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice, however, violate the bound with the conjectured constant. The empirical probability distribution function of the cover time for the square lattice is also briefly presented, since very little is known about cover time probability distribution functions in general.
Resumo:
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.
Resumo:
We present a study of scattering of massless planar scalar waves by a charged nonrotating black hole. Partial wave methods are applied to compute scattering and absorption cross sections, for a range of incident wavelengths. We compare our numerical results with semiclassical approximations from a geodesic analysis, and find excellent agreement. The glory in the backward direction is studied, and its properties are shown to be related to the properties of the photon orbit. The effects of the black hole charge upon scattering and absorption are examined in detail. As the charge of the black hole is increased, we find that the absorption cross section decreases, and the angular width of the interference fringes of the scattering cross section at large angles increases. In particular, the glory spot in the backward direction becomes wider. We interpret these effects under the light of our geodesic analysis.
Resumo:
This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wave fronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.
Resumo:
We study evolution of gravitational perturbations of black strings. It is well known that for all wave numbers less than some threshold value, the black string is unstable against the scalar type of gravitational perturbations, which is named the Gregory-Laflamme instability. Using numerical methods, we find the quasinormal modes and time-domain profiles of the black string perturbations in the stable sector and also show the appearance of the Gregory-Laflamme instability in the time domain. The dependence of the black string quasinormal spectrum and late-time tails on such parameters as the wave vector and the number of extra dimensions is discussed. There is numerical evidence that at the threshold point of instability, the static solution of the wave equation is dominant. For wave numbers slightly larger than the threshold value, in the region of stability, we see tiny oscillations with very small damping rate. While, for wave numbers slightly smaller than the threshold value, in the region of the Gregory-Laflamme instability, we observe tiny oscillations with very small growth rate. We also find the level crossing of imaginary part of quasinormal modes between the fundamental mode and the first overtone mode, which accounts for the peculiar time domain profiles.
Resumo:
We study the massless scalar, Dirac, and electromagnetic fields propagating on a 4D-brane, which is embedded in higher-dimensional Gauss-Bonnet space-time. We calculate, in the time domain, the fundamental quasinormal modes of a spherically symmetric black hole for such fields. Using WKB approximation we study quasinormal modes in the large multipole limit. We observe also a universal behavior, independent on a field and value of the Gauss-Bonnet parameter, at an asymptotically late time.
Resumo:
We report a comprehensive discussion of quantum interference effects due to the finite structure of neutral excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. The signatures of built-in electric fields and temperature on quantum interference are demonstrated by theoretical models that describe the modulation of the interference pattern and confirmed by complementary experimental procedures.
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1/2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
We consider the problem of interaction neighborhood estimation from the partial observation of a finite number of realizations of a random field. We introduce a model selection rule to choose estimators of conditional probabilities among natural candidates. Our main result is an oracle inequality satisfied by the resulting estimator. We use then this selection rule in a two-step procedure to evaluate the interacting neighborhoods. The selection rule selects a small prior set of possible interacting points and a cutting step remove from this prior set the irrelevant points. We also prove that the Ising models satisfy the assumptions of the main theorems, without restrictions on the temperature, on the structure of the interacting graph or on the range of the interactions. It provides therefore a large class of applications for our results. We give a computationally efficient procedure in these models. We finally show the practical efficiency of our approach in a simulation study.