920 resultados para Photonic switch


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years there has been a clear evolution in the world of telecommunications, which goes from new services that need higher speeds and higher bandwidth, until a role of interactions between people and machines, named by Internet of Things (IoT). So, the only technology able to follow this growth is the optical communications. Currently the solution that enables to overcome the day-by-day needs, like collaborative job, audio and video communications and share of les is based on Gigabit-capable Passive Optical Network (G-PON) with the recently successor named Next Generation Passive Optical Network Phase 2 (NG-PON2). This technology is based on the multiplexing domain wavelength and due to its characteristics and performance becomes the more advantageous technology. A major focus of optical communications are Photonic Integrated Circuits (PICs). These can include various components into a single device, which simpli es the design of the optical system, reducing space and power consumption, and improves reliability. These characteristics make this type of devices useful for several applications, that justi es the investments in the development of the technology into a very high level of performance and reliability in terms of the building blocks. With the goal to develop the optical networks of future generations, this work presents the design and implementation of a PIC, which is intended to be a universal transceiver for applications for NG-PON2. The same PIC will be able to be used as an Optical Line Terminal (OLT) or an Optical Network Unit (ONU) and in both cases as transmitter and receiver. Initially a study is made of Passive Optical Network (PON) and its standards. Therefore it is done a theoretical overview that explores the materials used in the development and production of this PIC, which foundries are available, and focusing in SMART Photonics, the components used in the development of this chip. For the conceptualization of the project di erent architectures are designed and part of the laser cavity is simulated using Aspic™. Through the analysis of advantages and disadvantages of each one, it is chosen the best to be used in the implementation. Moreover, the architecture of the transceiver is simulated block by block through the VPItransmissionMaker™ and it is demonstrated its operating principle. Finally it is presented the PIC implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study with the purpose to examine the effects of duodenal switch (DS), regularly performed in morbidly obese patients, on biodistribution of sodium pertechnetate in several organs of rats. There was no early or late mortality in either rats groups. The values of percent radioactivity per gram of tissue (%ATI/g), showed no significant difference in liver, stomach, small bowel, duodenum, kidney, heart, bladder, bone and brain, when compared the DS rats with sham and controls rats. A postoperative significant increase (p<0.05) in mean %ATI/g levels was observed in spleen, pancreas and muscle in group DS rats, as compared to group S and C rats. In the lung there was an increase and in thyroid a decrease in mean %ATI/g of DS rats, when compared to sham rats (p<0.05). In conclusion, the biliopancreatic diversion with duodenal switch in rats modified the biodistribution of sodium pertechnetate in thyroid, lung, pancreas, spleen and muscle

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work three different metallic metamaterials (MMs) structures such as asymmetric split ring resonators (A-SRRs), dipole and split H-shaped (ASHs) structures that support plasmonic resonances have been developed. The aim of the work involves the optimization of photonic sensor based on plasmonic resonances and surface enhanced infrared absorption (SEIRA) from the MM structures. The MMs structures were designed to tune their plasmonic resonance peaks in the mid-infrared region. The plasmonic resonance peaks produced are highly dependent on the structural dimension and polarisation of the electromagnetic (EM) source. The ASH structure particularly has the ability to produce the plasmonic resonance peak with dual polarisation of the EM source. The double resonance peaks produced due to the asymmetric nature of the structures were optimized by varying the fundamental parameters of the design. These peaks occur due to hybridization of the individual elements of the MMs structure. The presence of a dip known as a trapped mode in between the double plasmonic peaks helps to narrow the resonances. A periodicity greater than twice the length and diameter of the metallic structure was applied to produce narrow resonances for the designed MMs. A nanoscale gap in each structure that broadens the trapped mode to narrow the plasmonic resonances was also used. A thickness of 100 nm gold was used to experimentally produce a high quality factor of 18 in the mid-infrared region. The optimised plasmonic resonance peaks was used for detection of an analyte, 17β-estradiol. 17β-estradiol is mostly responsible for the development of human sex organs and can be found naturally in the environment through human excreta. SEIRA was the method applied to the analysis of the analyte. The work is important in the monitoring of human biology and in water treatment. Applying this method to the developed nano-engineered structures, enhancement factors of 10^5 and a sensitivity of 2791 nm/RIU was obtained. With this high sensitivity a figure of merit (FOM) of 9 was also achieved from the sensors. The experiments were verified using numerical simulations where the vibrational resonances of the C-H stretch from 17β-estradiol were modelled. Lastly, A-SRRs and ASH on waveguides were also designed and evaluated. These patterns are to be use as basis for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delicate balance between the production and disposal of proteins is vital for the changes required in the cell to respond to given stimulus. Ubiquitination is a protein modification with a range of signaling outcomes when ubiquitin is attached to a protein through a highly ordered enzymatic cascade process. Understanding ubiquitination is a growing field and nowadays the application of chemical reactions allows the isolation of quantitative materials for structural studies. Therefore, in this dissertation it is described some of these suitable chemical methodologies to produce an isopeptide bond toward the polymerization of ubiquitin bypassing the enzymatic control with the purpose of showing if these chemical modifications have a direct impact on the structure of ubiquitin. First, the possibility of incorporating non-natural lysine analogs known as mercaptolysines into the polypeptide chain of Ubiquitin was explored when they were attached to ubiquitin by native chemical ligation at its C terminus. The sulfhydryl group was used for the attachment of a paramagnetic label to map the surface of ubiquitin. Second, the condensation catalyzed by silver nitrate was used for the dimer assembly. In particular, the main focus was on examining whether orthogonal protection and deprotection of each monomer have an impact on the reaction yield, since the synthetic strategy has been previously attempted successfully. Third, the formation of ubiquitin dimers was approached by building an inter-ubiquitin linkage mimicking the isopeptide bond with two approaches, the classic disulfide exchange as well as the thiol-ene click reaction by thermal initiation in aqueous conditions. After assembling the dimeric units, they were studied by Nuclear Magnetic Resonance, in order to establish a conformational state profile which depends on the pH conditions. The latter is a very important concept since some ligands have a preferred affinity when the protein-protein hydrophobic patches are in close proximity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dedicated multi-project wafer (MPW) runs for photonic integrated circuits (PICs) from Si foundries mean that researchers and small-to-medium enterprises (SMEs) can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una delle principali caratteristiche dei trasduttori per energy harvesting piezoelettrici è il fatto che la loro impedenza d'uscita è principalmente capacitiva. Questo consente di elaborare schemi di conversione dell'energia basati su circuiti risonanti attivati in modo sincrono con le vibrazioni, che risultano in grado di aumentare notevolmente la potenza di uscita rispetto alle comuni interfacce passive. Questa tesi si è posta come obiettivo la progettazione e implementazione di un circuito per energy harvesting da vibrazioni basato sulla tecnica Synchronized Switch Harvesting on Inductor (SSHI) che garantisse un'elevata efficienza di conversione. Dovendo gestire potenze in ingresso tipicamente di debole entità, l'architettura proposta è stata ottimizzata per minimizzare la dissipazione di potenza interna al convertitore. Il circuito proposto è stato infine validato sperimentalmente tramite allestimento di un setup di misura dedicato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three technologies were tested (TiO2/UV, H2O2/UV, and TiO2/H2O2/UV) for the degradation and color removal of a 25 mg L-1 mixture of three acid dyes: Blue 9, Red 18, and Yellow 23. A low speed rotating disc reactor (20 rpm) and a H2O2 concentration of 2.5 mmol L-1 were used. The dyes did not significantly undergo photolysis, although they were all degraded by the studied advanced oxidation processes. With the TiO2/H2O2/UV process, a strong synergism was observed (color removal reached 100%). Pseudo first order kinetic constants were estimated for all processes, as well as the respective apparent photonic efficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the scanning tunneling microscopy (STM) signatures for the O/Cu(3)Au(100) surface from the low-coverage (isolated impurity) to high-coverage (oxide) regimes. First-principles calculations show that oxygen signatures switch from dark to bright spots as the oxygen coverage increases. This behavior is nicely traced back to a change in the oxygen orbital character of the Fermi-level electronic states. Our results allow for the chemical identification by STM of oxygen and copper atoms in the fully ordered O/Cu(3)Au(100)-c(2x2) surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Long-acting injectable antipsychotics may improve medication adherence, thereby improving overall treatment effectiveness. This study aimed to evaluate the effectiveness, safety, and tolerability of risperidone long-acting injection in schizophrenic patients switched from oral antipsychotic medication. Methods: In a 12-month, multicenter, open-label, noncomparative study, symptomatically stable patients on oral antipsychotic medication with poor treatment adherence during the previous 12 months received intramuscular injections of risperidone long-acting injection (25 mg starting dose) every 2 weeks. The primary endpoint was the change in Positive and Negative Syndrome Scale (PANSS) total score. Results: Of the 60 patients who were screened, 53 received at least one injection (safety population), and 51 provided at least one postbaseline assessment. Mean PANSS total scores improved significantly throughout the study and at endpoint. Significant improvements were also observed in Clinical Global Impression of Severity, Personal and Social Performance, and Drug Attitude Inventory scales. Risperidone long-acting injection was safe and well-tolerated. Severity of movement disorders on the Extrapyramidal Symptom Rating Scale was reduced significantly. The most frequently reported adverse events were insomnia (22.6%), increased prolactin (17.0%), and weight gain (13.2%). Conclusion: Risperidone long-acting injection was associated with significant symptomatic improvements in stable patients with schizophrenia following a switch from previous antipsychotic medications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the measurement of nonphotonic electron production at high transverse momentum (p(T) > 2.5 GeV/c) in p + p collisions at root s = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured nonphotonic electron cross sections with previously published RHIC data and perturbative quantum chromodynamics calculations. Using the relative contributions of B and D mesons to nonphotonic electrons, we determine the integrated cross sections of electrons (e++e-2/2) at 3 GeV/c < p(T) < 10 GeV/c from bottom and charm meson decays to be [(d sigma((B -> e)+(B -> D -> e))/(dy(e))](ye=0) 4.0 +/- 0.5(stat) +/- 1.1(syst) nb and [(d sigma(D -> e))/(dy(e))](ye=0) = 6.2 +/- 0.7(stat) +/- 1.5(syst) nb, respectively.