988 resultados para Philippines. Legislature. Philippine Assembly
Resumo:
Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO-). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.
Resumo:
Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.
Resumo:
We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.
Resumo:
Equimolar combination of a series of binuclear half-sandwich p-cymene ruthenium(II) building units Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1a](OTf)(2), Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)( MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1b](OTf)(2) and Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1c](OTf)(2) separately with imidazole-based ditopic ligands (L-1-L-2) in methanol yielded a series of tetranuclear metallamacrocycles 2-7](OTf)(4), respectively L-1 = 1,4-bis(imidazole-1-yl)benzene; L-2 = 4,4'-bis(imidazole-1-yl)biphenyl; OTf- = O3SCF3-]. Similarly, the reaction of Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)2](OTf)(2) 1a](OTf)(2) with a triazine-based tritopic ligand 1,3,5-tris(imidazole-1-yl) triazine (L3) in 3: 2 M ratio afforded an unexpected tetranuclear macrocycle 8](OTf)(4) instead of an expected trigonal prismatic cage 8a](OTf)(6). All the self-assembled macrocycles 2-8](OTf)(4) were isolated in moderate to high yields and were fully characterized by multinuclear H-1, F-19] NMR, IR and electrospray ionization mass spectrometry (ESI-MS). In addition, X-ray diffraction study on the single crystals of 3](OTf)(4) and 8](OTf)(4) also indicated the formation 2 + 2] self-assembled macrocycles. Despite the possibility of formation of different conformational isomeric macrocycles (syn-and anti) and polymeric product due to free rotation of ligand sites of imidazole linkers, the selective formation of single conformational isomer (anti) as the only product is quite interesting. Furthermore, the photo-and electrochemical properties of these assemblies have been studied using UV/Vis absorption and cyclic voltammetry analysis. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Recent years have seen a tremendous increase in the interest for constructing hollowed-out molecular frameworks, for their potential uses. Metal-ligand coordination-driven self-assembly has provided multitudes of opportunities in the formation of molecular architectures of desired shapes and sizes, with the help of the information already coded in the components. This article summarizes the recent developments in the construction of multicomponent molecular cages through this process, with a focus on the decreasing relevance of templates, and use of these systems in catalysis/host-guest chemistry.
Resumo:
A new methodology has been developed for synthesizing lanthanide trifluoride (LnF(3)) nanoparticles using a simple diffusion technique. The approach uses a lanthanide based hydrogel matrix to control the kinetics of the reaction, which also acts as a stabilizing platform, thus enabling the room temperature, in situ synthesis of finely sized (3-5 nm), monodisperse nanoparticles that were found to form in an ordered pattern on the gel fibers.
Resumo:
A facile, environmentally friendly approach to synthesize branched Ir nanochain-like structures under mild conditions, using polyfunctional capping molecules in an aqueous medium is reported; the nanostructures exhibit a surface plasmon resonance peak (SPR) in the visible region and serve as an active substrate for surface enhanced Raman scattering studies.
Resumo:
We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Resumo:
This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Self-assembly of a chloro-bridged half-sandwich p-cymene ruthenium(II) complex Ru-2(mu-Cl-2)(eta(6)-p-cymene)(2)Cl-2] 1 with linear ditopic donor L; trans-1,2-bis(4-pyridyl) ethylene] in presence of 2 eq. AgNO3 in CH3CN yielded a chloro-bridged molecular rectangle 2. The rectangle 2 was isolated as nitrate salt in high yield (90 %) and characterized by infra-red, H-1 NMR spectroscopy including ESI-MS analyses. Molecular structure of 2 was determined by single crystal X-ray diffraction study The diffraction analysis shows that 2 adopts a tetranuclear rectangular geometry with the dimensions of 5.51 angstrom x 13.29 angstrom and forming an infinite supramolecular chain with large internal porosity arising through multiple pi-pi and CH-pi interactions between the adjacent rectangles. Furthermore, rectangle 2 is used as selective receptor for phenolic-nitroaromatic compounds such as picric acid, dinitrophenol and nitrophenol.
Resumo:
In the domain of manual mechanical assembly, expert knowledge is an important means of supporting assembly planning that leads to fewer issues during actual assembly. Knowledge based systems can be used to provide assembly planners with expert knowledge as advice. However, acquisition of knowledge remains a difficult task to automate, while manual acquisition is tedious, time-consuming, and requires engagement of knowledge engineers with specialist knowledge to understand and translate expert knowledge. This paper describes the development, implementation and preliminary evaluation of a method that asks a series of questions to an expert, so as to automatically acquire necessary diagnostic and remedial knowledge as rules for use in a knowledge based system for advising assembly planners diagnose and resolve issues. The method, called a questioning procedure, organizes its questions around an assembly situation which it presents to the expert as the context, and adapts its questions based on the answers it receives from the expert. (C) 2014 Elsevier Ltd. All rights reserved.
Component Selection in the Self-Assembly of Palladium(II) Nanocages and Cage-to-Cage Transformations
Resumo:
Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine-and imidazole-based donors have been used for self-selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two-component self-assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non-preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to Pd-II is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H-bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10(-5) to ca. 10(-3) Scm(-1)) at ambient temperature under a relative humidity of circa 98% with low activation energy.