967 resultados para Phage Purification
Resumo:
A CDP-diacylglycerol dependent phosphatidylserine synthase was detected in three species of gram-positive bacilli, viz. Bacillus licheniformis, Bacillus subtilis and Bacillus megaterium; the enzyme in B. licheniformis was studied in detail. The subcellular distribution experiments in cell-free extracts of B. licheniformis using differential centrifugation, sucrose gradient centrifugation and detergent solubilization showed the phosphatidylserine synthase to be tightly associated with the membrane. The enzyme was shown to have an absolute requirement for divalent metal ion for activity with a strong preference for manganese. The enzyme activity was completely dependent upon the addition of CDP-diacylglycerol to the assay system; the role of the liponucleotide was rigorously shown to be that of phosphatidyl donor and not just a detergent-like stimulator. This enzyme was then solubilized from B. licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue-dextran Sepharose. The purified preparation showed a single band with an apparent minimum molecular weight of 53,000 when subjected to SDS polyacrylamide gel electrophoresis. The preparation was free of any phosphatidylglycerophosphate synthase, CDP-diacylglycerol hydrolase and phosphatidylserine hydrolase activities. The utilization of substrates and formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential BiBi reaction as opposed to the ping-pong mechanism exhibited by the well studied phosphatidylserine synthase of Escherichia coli. Proteolytic digestion of the enzyme yielded a smaller active form of the enzyme (41,000 daltons) which appears to be less prone to aggregation.^ This has been the first detailed study in a well-defined bacillus species of the enzyme catalyzing the CDP-diacylglycerol-dependent formation of phosphatidylserine; this reaction is the first committed step in the biosynthetic pathway to the major membrane component, phosphatidylethanolamine. Further study of this enzyme may lead to understanding of new mechanisms of phosphatidyl transfer and novel modes of control of phospholipid biosynthetic enzymes. ^
Resumo:
The copines, named and first described by Creutz et al. (1998), comprise a two C2 domain-containing protein family that can aggregate phosphatidylserine membranes in a calcium-dependent manner. Although no enzymatic function has been attributed to copines, their carboxyl terminus shows homology to the A domain found in integrins that allows binding of magnesium ions. The secondary structure of A domains resembles a Rossmann fold, which can bind dinucleotides and is present in a number of intracellular enzymes. Due to a crossreacting activity of Mik b 1, an antibody to the IL-2R b chain, we were able to serendipitously clone human copine III (CIII). CIII is 65% identical to copine I (CI) and the 5 kb CIII transcript is expressed ubiquitously as determined by a multitissue Northern blot. A polyclonal antibody generated against the carboxyl terminus of CIII recognized CIII in immunoblots and immunoprecipitations. Phosphorylation of CIII was observed on serine and threonine residues, as determined by phosphoamino acid analysis. ^ Experiments were designed to determine whether or not any enzymatic activity, specifically kinase activity, was intrinsic to or associated with CIII. In vitro and in gel kinase assays were performed using transfected HA-tagged CI and CIII, immunoprecipitated endogenous CIII and purified endogenous CIII. The exogenous substrate MBP was phosphorylated in all in vitro kinase assays containing CIII protein purification and column chromatography expertise with me. ^
Resumo:
Attempts have been made in this dissertation to develop a purified antigen with high sensitivity and specificity for diagnosis of Schistosoma mansoni (Sm) infection by using the hybridoma technique.^ Spleen cells, obtained from mice immunized by infection with Sm and boosted by cercarial antigens, or by injection of circulating antigen (CA) in serum from infected mice, were fused with Sp2/0 myeloma cells. The active infection resulted a higher number of hybridomas (100%) than by CA (20%), and higher levels of antibody reactivity as measured by ELISA.^ The IgM and IgG monoclonal antibodies (MCAbs) were purified respectively by gel filtration, DE 52 ion exchange column and proteinase A affinity column. The cercarial and egg antigens were purified by affinity chromatography through MCAb/affi-gel column. The reactivity of the purified antigens were then monitored by ELISA, SDS-PAGE silver stain and EITB.^ The respective MCAbs recognized varying antigenic determinants (AD) present in adult, cercaria and egg stages. By EITB the MCAbs IgM and IgG, when reacted with nine antigens from the various stages, revealed identical bands, suggesting that the two MCAb classes originated from identical AD. By ELISA and COPT, the MCAbs from thirteen cell lines gave same results. But by CHR, two MCAbs showed negative results while eleven other MCAbs showed strong positive. It is assumed that the AD in the immunogen that ilicited the MCAbs were immunochemically closely related.^ One egg purified by immunoaffinity indicated that the epitopes recognized by MCAb were present on four antigenic components with molecular weights (Mr) of approximately 19, 25, 60 and >224 kd, respectively. By EITB the Mr 19 doublet appeared to be species specific; the Mr 25 kd genus specific. They reacted with mouse serum from 13-16 weeks after infection. In monkey serum Mr 19 doublet appeared 8-10 weeks after infection and disappeared at 8-12 weeks after Droncit treatment, paralleled to the disappearance of fecal egg. The Mr 60 and >224 kd bands were also demonstrated with S. japonicum, S. haematobium and Trichinella spiralis infection sera and may be the cause of cross-reaction in conventional serological test. ^
Resumo:
The recA gene is essential for SOS response induction, for inducible DNA repair and for homologous recombination in E. coli. The level of recA expression is significant for these functions. A basal level of about 1000 molecules of RecA protein is sufficient for homologous recombination of the cell and is essential for the induction of the SOS response. Based on previous observations, two models regarding the origin of the basal RecA protein were postulated. One was that it comes from the leaky expression of the LexA repressed promoter. The other was that it is from another weak but constitutive promoter. The first part of this thesis is to study these possibilities. An $\Omega$ cartridge containing the transcription terminator of gene 32 of T4 phage was exploited to define a second promoter for recA expression. Insertion of this $\Omega$ cartridge downstream of the known promoter gave rise to only minor expression. Purification and N-terminus sequencing of the RecA protein from the insertion mutant did not support the existence of a second promoter. To determine whether the basal RecA is due to the leaky expression of the known LexA repressed promoter, recA expression of a SOS induction minus strain (basal level expression of recA) was compared with that of a recA promoter down mutation recA1270. The result demonstrated that there is leaky expression from the LexA repressed promoter. All the evidence supports the conclusion that there is only one promoter for both basal and induced expression levels of recA.^ Several translation enhancer sequences which are complementary to different regions of the 16S rRNA were found to exist in recA mRNA. The leader sequence of recA mRNA is highly complementary to a region of the 16S rRNA. Thus it appeared that recA expression could be regulated at post-transcriptional levels. The second part of this thesis is focused on the study of the post-transcriptional control of recA expression. Deletions of the complementary regions were created to examine their effect on recA expression. The results indicated that all of the complementary regions were important for the normal expression of recA and their effects were post-transcriptional. RNA secondary structures of wild type recA mRNA was inspected and a stem-loop structure was revealed. The expression down mutations at codon 10 and 11 were found to stabilize this structure. The conclusions of the second part of this thesis are that there is post-transcriptional control for recA expression and the leader sequence of recA mRNA plays more than one role in the control of recA expression. ^
Resumo:
Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^
Resumo:
The polysilicon market is experiencing tremendous changes due to the strong demand from Photovoltaics (PV), which has by far surpassed the demand from Microelectronics. The need of solar silicon has induced a large increase in capacity, which has now given a scenario of oversupply, reducing the polysilicon price to levels that put a strong pressure on the cost structure of the producers. The paper reports on the R&D efforts carried out in the field of solar silicon purification via the chlorosilane route by a private-public consortium that is building a pilot plant of 50-100 tonnes/year, that will synthesize trichlorosilane, purify it and deposit ultrapure silicon in an industrial-size Siemens type reactor. It has also capabilities for ingot growth and material characterization. A couple of examples of the progress so far are given, the first one related to the recycling scheme of chlorinated compounds, and the second to the minimization of radiation losses in the CVD deposition process, which account for a relevant part of the total energy consumption. In summary, the paper gives details on the technology being developed in our pilot plant, which offers a unique platform for field-testing of innovative approaches that can lead to a cost reduction of solar silicon produced via the chlorosilane route.
Resumo:
In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2̇̄) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.
Resumo:
Tree nut allergies are considered an important health issue in developed countries. To comply with the regulations on food labeling, reliable allergen detection methods are required. In this work we isolated almond-specific recombinant antibody fragments (scFv) from a commercial phage display library bypassing the use of live animals, hence being consistent with the latest policies on animal welfare. To this end an iterative selection procedure employing the Tomlinson I phage display library and a crude almond protein extract was carried out. Two different almond-specific scFv (named PD1F6 and PD2C9) were isolated after two rounds of biopanning, and an indirect phage ELISA was implemented to detect the presence of almond protein in foodstuffs. The isolated scFvs demonstrated to be highly specific and allowed detection of 40 ng mL?1 and 100 ng mL?1 of raw and roasted almond protein, respectively. The practical detection limit of the assay in almond spiked food products was 0.1 mg g?1 (110e120 ppm). The developed indirect phage ELISA was validated by analysis of 92 commercial food products, showing good correlation with the results obtained by a previously developed real-time PCR method for the detection of almond in foodstuffs. The selected phage clones can be affinity maturated to improve their sensitivity and genetically engineered to be employed in different assay formats.
Resumo:
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two types of subunits: RNR1 contains the active site for reduction and the binding sites for the nucleotide allosteric effectors. RNR2 contains the diiron-tyrosyl radical (Y⋅) cofactor essential for the reduction process. Studies in yeast have recently identified four RNR subunits: Y1 and Y3, Y2 and Y4. These proteins have been expressed in Saccharomyces cerevisiae and in Escherichia coli and purified to ≈90% homogeneity. The specific activity of Y1 isolated from yeast and E. coli is 0.03 μmol⋅min−1⋅mg−1 and of (His)6-Y2 [(His)6-Y2-K387N] from yeast is 0.037 μmol⋅min−1⋅mg−1 (0.125 μmol⋅min−1⋅mg−1). Y2, Y3, and Y4 isolated from E. coli have no measurable activity. Efforts to generate Y⋅ in Y2 or Y4 using Fe2+, O2, and reductant have been unsuccessful. However, preliminary studies show that incubation of Y4 and Fe2+ with inactive E. coli Y2 followed by addition of O2 generates Y2 with a specific activity of 0.069 μmol⋅min−1⋅mg−1 and a Y⋅. A similar experiment with (His)6-Y2-K387N, Y4, O2, and Fe2+ results in an increase in its specific activity to 0.30 μmol⋅min−1⋅mg−1. Studies with antibodies to Y4 and Y2 reveal that they can form a complex in vivo. Y4 appears to play an important role in diiron-Y⋅ assembly of Y2.
Resumo:
Surface proteins of Staphylococcus aureus are linked to the bacterial cell wall by sortase, an enzyme that cleaves polypeptides at the threonine of the LPXTG motif. Surface proteins can be released from staphylococci by treatment with hydroxylamine, resulting in the formation of threonine hydroxamate. Staphylococcal extracts, as well as purified sortase, catalyze the hydroxylaminolysis of peptides bearing an LPXTG motif, a reaction that can be inhibited with sulfhydryl-modifying reagents. Replacement of the single conserved cysteine at position 184 of sortase with alanine abolishes enzyme activity. Thus, sortase appears to catalyze surface-protein anchoring by means of a transpeptidation reaction that captures cleaved polypeptides as thioester enzyme intermediates.
Resumo:
We have purified and characterized a novel 60-kDa protein that binds to centromeric K-type repeat DNA from Schizosaccharomyces pombe. This protein was initially purified by its ability to bind to the autonomously replicating sequence 3002 DNA. Cloning of the gene encoding this protein revealed that it possesses significant homology to the mammalian centromere DNA-binding protein CENP-B and S. pombe Abp1, and this gene was designated as cbh+ (CENP-B homologue). Cbh protein specifically interacts in vitro with the K-type repeat DNA, which is essential for centromere function. The Cbh-binding consensus sequence was determined by DNase I footprinting assays as PyPuATATPyPuTA, featuring an inverted repeat of the first four nucleotides. Based on its binding activity to centromeric DNA and homology to centromere proteins, we suggest that this protein may be a functional homologue of the mammalian CENP-B in S. pombe.
Resumo:
Acetone metabolism in the aerobic bacterium Xanthobacter strain Py2 proceeds by a carboxylation reaction forming acetoacetate as the first detectable product. In this study, acetone carboxylase, the enzyme catalyzing this reaction, has been purified to homogeneity and characterized. Acetone carboxylase was comprised of three polypeptides with molecular weights of 85,300, 78,300, and 19,600 arranged in an α2β2γ2 quaternary structure. The carboxylation of acetone was coupled to the hydrolysis of ATP and formation of 1 mol AMP and 2 mol inorganic phosphate per mol acetoacetate formed. ADP was also formed during the course of acetone consumption, but only accumulated at low, substoichiometric levels (≈10% yield) relative to acetoacetate. Inorganic pyrophosphate could not be detected as an intermediate or product of acetone carboxylation. In the absence of CO2, acetone carboxylase catalyzed the acetone-dependent hydrolysis of ATP to form both ADP and AMP, with ADP accumulating to higher levels than AMP during the course of the assays. Acetone carboxylase did not have inorganic pyrophosphatase activity. Acetone carboxylase exhibited a Vmax for acetone carboxylation of 0.225 μmol acetoacetate formed min−1⋅mg−1 at 30°C and pH 7.6 and apparent Km values of 7.80 μM (acetone), 122 μM (ATP), and 4.17 mM (CO2 plus bicarbonate). These studies reveal molecular properties of the first bacterial acetone-metabolizing enzyme to be isolated and suggest a novel mechanism of acetone carboxylation coupled to ATP hydrolysis and AMP and inorganic phosphate formation.
Resumo:
A single-chain Fv (scFv) fusion phage library derived from random combinations of VH and VL (variable heavy and light chains) domains in the antibody repertoire of a vaccinated melanoma patient was previously used to isolate clones that bind specifically to melanoma cells. An unexpected finding was that one of the clones encoded a truncated scFv molecule with most of the VL domain deleted, indicating that a VH domain alone can exhibit tumor-specific binding. In this report a VH fusion phage library containing VH domains unassociated with VL domains was compared with a scFv fusion phage library as a source of melanoma-specific clones; both libraries contained the same VH domains from the vaccinated melanoma patient. The results demonstrate that the clones can be isolated from both libraries, and that both libraries should be used to optimize the chance of isolating clones binding to different epitopes. Although this strategy has been tested only for melanoma, it is also applicable to other cancers. Because of their small size, human origin and specificity for cell surface tumor antigens, the VH and scFv molecules have significant advantages as tumor-targeting molecules for diagnostic and therapeutic procedures and can also serve as probes for identifying the cognate tumor antigens.