985 resultados para Parallel Programming Languages
Resumo:
An overview of programming and software development.
Resumo:
In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Simulation of large and complex systems, such as computing grids, is a difficult task. Current simulators, despite providing accurate results, are significantly hard to use. They usually demand a strong knowledge of programming, what is not a standard pattern in today's users of grids and high performance computing. The need for computer expertise prevents these users from simulating how the environment will respond to their applications, what may imply in large loss of efficiency, wasting precious computational resources. In this paper we introduce iSPD, iconic Simulator of Parallel and Distributed Systems, which is a simulator where grid models are produced through an iconic interface. We describe the simulator and its intermediate model languages. Results presented here provide an insight in its easy-of-use and accuracy.
Resumo:
This paper presents a new parallel methodology for calculating the determinant of matrices of the order n, with computational complexity O(n), using the Gauss-Jordan Elimination Method and Chio's Rule as references. We intend to present our step-by-step methodology using clear mathematical language, where we will demonstrate how to calculate the determinant of a matrix of the order n in an analytical format. We will also present a computational model with one sequential algorithm and one parallel algorithm using a pseudo-code.
Resumo:
Service Oriented Computing is a new programming paradigm for addressing distributed system design issues. Services are autonomous computational entities which can be dynamically discovered and composed in order to form more complex systems able to achieve different kinds of task. E-government, e-business and e-science are some examples of the IT areas where Service Oriented Computing will be exploited in the next years. At present, the most credited Service Oriented Computing technology is that of Web Services, whose specifications are enriched day by day by industrial consortia without following a precise and rigorous approach. This PhD thesis aims, on the one hand, at modelling Service Oriented Computing in a formal way in order to precisely define the main concepts it is based upon and, on the other hand, at defining a new approach, called bipolar approach, for addressing system design issues by synergically exploiting choreography and orchestration languages related by means of a mathematical relation called conformance. Choreography allows us to describe systems of services from a global view point whereas orchestration supplies a means for addressing such an issue from a local perspective. In this work we present SOCK, a process algebra based language inspired by the Web Service orchestration language WS-BPEL which catches the essentials of Service Oriented Computing. From the definition of SOCK we will able to define a general model for dealing with Service Oriented Computing where services and systems of services are related to the design of finite state automata and process algebra concurrent systems, respectively. Furthermore, we introduce a formal language for dealing with choreography. Such a language is equipped with a formal semantics and it forms, together with a subset of the SOCK calculus, the bipolar framework. Finally, we present JOLIE which is a Java implentation of a subset of the SOCK calculus and it is part of the bipolar framework we intend to promote.
Resumo:
The application of Concurrency Theory to Systems Biology is in its earliest stage of progress. The metaphor of cells as computing systems by Regev and Shapiro opened the employment of concurrent languages for the modelling of biological systems. Their peculiar characteristics led to the design of many bio-inspired formalisms which achieve higher faithfulness and specificity. In this thesis we present pi@, an extremely simple and conservative extension of the pi-calculus representing a keystone in this respect, thanks to its expressiveness capabilities. The pi@ calculus is obtained by the addition of polyadic synchronisation and priority to the pi-calculus, in order to achieve compartment semantics and atomicity of complex operations respectively. In its direct application to biological modelling, the stochastic variant of the calculus, Spi@, is shown able to model consistently several phenomena such as formation of molecular complexes, hierarchical subdivision of the system into compartments, inter-compartment reactions, dynamic reorganisation of compartment structure consistent with volume variation. The pivotal role of pi@ is evidenced by its capability of encoding in a compositional way several bio-inspired formalisms, so that it represents the optimal core of a framework for the analysis and implementation of bio-inspired languages. In this respect, the encodings of BioAmbients, Brane Calculi and a variant of P Systems in pi@ are formalised. The conciseness of their translation in pi@ allows their indirect comparison by means of their encodings. Furthermore it provides a ready-to-run implementation of minimal effort whose correctness is granted by the correctness of the respective encoding functions. Further important results of general validity are stated on the expressive power of priority. Several impossibility results are described, which clearly state the superior expressiveness of prioritised languages and the problems arising in the attempt of providing their parallel implementation. To this aim, a new setting in distributed computing (the last man standing problem) is singled out and exploited to prove the impossibility of providing a purely parallel implementation of priority by means of point-to-point or broadcast communication.
Resumo:
In computer systems, specifically in multithread, parallel and distributed systems, a deadlock is both a very subtle problem - because difficult to pre- vent during the system coding - and a very dangerous one: a deadlocked system is easily completely stuck, with consequences ranging from simple annoyances to life-threatening circumstances, being also in between the not negligible scenario of economical losses. Then, how to avoid this problem? A lot of possible solutions has been studied, proposed and implemented. In this thesis we focus on detection of deadlocks with a static program analysis technique, i.e. an analysis per- formed without actually executing the program. To begin, we briefly present the static Deadlock Analysis Model devel- oped for coreABS−− in chapter 1, then we proceed by detailing the Class- based coreABS−− language in chapter 2. Then, in Chapter 3 we lay the foundation for further discussions by ana- lyzing the differences between coreABS−− and ASP, an untyped Object-based calculi, so as to show how it can be possible to extend the Deadlock Analysis to Object-based languages in general. In this regard, we explicit some hypotheses in chapter 4 first by present- ing a possible, unproven type system for ASP, modeled after the Deadlock Analysis Model developed for coreABS−−. Then, we conclude our discussion by presenting a simpler hypothesis, which may allow to circumvent the difficulties that arises from the definition of the ”ad-hoc” type system discussed in the aforegoing chapter.
Resumo:
To support development tools like debuggers, runtime systems need to provide a meta-programming interface to alter their semantics and access internal data. Reflective capabilities are typically fixed by the Virtual Machine (VM). Unanticipated reflective features must either be simulated by complex program transformations, or they require the development of a specially tailored VM. We propose a novel approach to behavioral reflection that eliminates the barrier between applications and the VM by manipulating an explicit tower of first-class interpreters. Pinocchio is a proof-of-concept implementation of our approach which enables radical changes to the interpretation of programs by explicitly instantiating subclasses of the base interpreter. We illustrate the design of Pinocchio through non-trivial examples that extend runtime semantics to support debugging, parallel debugging, and back-in-time object-flow debugging. Although performance is not yet addressed, we also discuss numerous opportunities for optimization, which we believe will lead to a practical approach to behavioral reflection.
Resumo:
Domain-specific languages (DSLs) are increasingly used as embedded languages within general-purpose host languages. DSLs provide a compact, dedicated syntax for specifying parts of an application related to specialized domains. Unfortunately, such language extensions typically do not integrate well with the development tools of the host language. Editors, compilers and debuggers are either unaware of the extensions, or must be adapted at a non-trivial cost. We present a novel approach to embed DSLs into an existing host language by leveraging the underlying representation of the host language used by these tools. Helvetia is an extensible system that intercepts the compilation pipeline of the Smalltalk host language to seamlessly integrate language extensions. We validate our approach by case studies that demonstrate three fundamentally different ways to extend or adapt the host language syntax and semantics.
Resumo:
An important problem in computational biology is finding the longest common subsequence (LCS) of two nucleotide sequences. This paper examines the correctness and performance of a recently proposed parallel LCS algorithm that uses successor tables and pruning rules to construct a list of sets from which an LCS can be easily reconstructed. Counterexamples are given for two pruning rules that were given with the original algorithm. Because of these errors, performance measurements originally reported cannot be validated. The work presented here shows that speedup can be reliably achieved by an implementation in Unified Parallel C that runs on an Infiniband cluster. This performance is partly facilitated by exploiting the software cache of the MuPC runtime system. In addition, this implementation achieved speedup without bulk memory copy operations and the associated programming complexity of message passing.
DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
Resumo:
With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.