909 resultados para Panoramic projections. Virtual Environments. Navigation in 3D environments. Virtual Reality
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Purpose: Retinal stem cells (RSCs) can be isolated from radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have great capacity to renew and generate neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, our published results showed poor integration and survival rate after cell grafting into the retina. The uncontrollable environment of retina seems to be the problem. To bypass this, we are trying to generate hemi-retinal tissue in vitro that can be used for transplantation. Methods: Expanded RSCs were seeded in a mixture of poly-ethylene-glycol (PEG)-polymer-based hydrogels crosslinked by peptides that also serve as substrates for matrix metalloproteinases. Different doses of crosslinker peptides were tested. Several growth factors were studied to stimulate cell proliferation and differentiation. Results: Cells were trapped in hydrogels and cultured in the presence of FGF2 and EGF. Spherical cell clusters indicating proliferation appeared within several days, but there was no cell migration within the gel. We then added cell adhesion molecules integrin ligand RGDSP, or laminin, or a combination of both, into the gel. Cells grown with laminin showed the best proliferation. Cells grown with RGDSP proliferated a few times and then started to spread out. Cells grown with the combination of RGDSP and laminin showed better proliferation than with RGDSP alone and larger spread-outs than with laminin alone. After stimulations with first FGF2 and EGF, and then only FGF2, some cells showed neuronal morphology after 2 weeks. The neuronal population was assessed by the presence of neuronal marker b-tubulin-III. Glial cells were also present. Further characterizations are undergoing. Conclusions: RSC can grow and migrate in 3D hydrogel with the addition of FGF2, EGF, RGDSP and laminin. Further developments are necessary to form a homogenous tissue containing retinal cells.
Resumo:
Hem realitzat l’estudi de moviments humans i hem buscat la forma de poder crear aquests moviments en temps real sobre entorns digitals de forma que la feina que han de dur a terme els artistes i animadors sigui reduïda. Hem fet un estudi de les diferents tècniques d’animació de personatges que podem trobar actualment en l’industria de l’entreteniment així com les principals línies de recerca, estudiant detingudament la tècnica més utilitzada, la captura de moviments. La captura de moviments permet enregistrar els moviments d’una persona mitjançant sensors òptics, sensors magnètics i vídeo càmeres. Aquesta informació és emmagatzemada en arxius que després podran ser reproduïts per un personatge en temps real en una aplicació digital. Tot moviment enregistrat ha d’estar associat a un personatge, aquest és el procés de rigging, un dels punts que hem treballat ha estat la creació d’un sistema d’associació de l’esquelet amb la malla del personatge de forma semi-automàtica, reduint la feina de l’animador per a realitzar aquest procés. En les aplicacions en temps real com la realitat virtual, cada cop més s’està simulant l’entorn en el que viuen els personatges mitjançant les lleis de Newton, de forma que tot canvi en el moviment d’un cos ve donat per l’aplicació d’una força sobre aquest. La captura de moviments no escala bé amb aquests entorns degut a que no és capaç de crear noves animacions realistes a partir de l’enregistrada que depenguin de l’interacció amb l’entorn. L’objectiu final del nostre treball ha estat realitzar la creació d’animacions a partir de forces tal i com ho fem en la realitat en temps real. Per a això hem introduït un model muscular i un sistema de balanç sobre el personatge de forma que aquest pugui respondre a les interaccions amb l’entorn simulat mitjançant les lleis de Newton de manera realista.
Resumo:
OBJECTIVE: The objective of this trial was to assess which type of warm-up has the highest effect on virtual reality (VR) laparoscopy performance. The following warm-up strategies were applied: a hands-on exercise (group 1), a cognitive exercise (group 2), and no warm-up (control, group 3). DESIGN: This is a 3-arm randomized controlled trial. SETTING: The trial was conducted at the department of surgery of the University Hospital Basel in Switzerland. PARTICIPANTS: A total of 94 participants, all laypersons without any surgical or VR experience, completed the study. RESULTS: A total of 96 participants were randomized, 31 to group 1, 31 to group 2, and 32 to group 3. There were 2 postrandomization exclusions. In the multivariate analysis, we found no evidence that the intervention had an effect on VR performance as represented by 6 calculated subscores of accuracy, time, and path length for (1) camera manipulation and (2) hand-eye coordination combined with 2-handed maneuvers (p = 0.795). Neither the comparison of the average of the intervention groups (groups 1 and 2) vs control (group 3) nor the pairwise comparisons revealed any significant differences in VR performance, neither multivariate nor univariate. VR performance improved with increasing performance score in the cognitive exercise warm-up (iPad 3D puzzle) for accuracy, time, and path length in the camera navigation task. CONCLUSIONS: We were unable to show an effect of the 2 tested warm-up strategies on VR performance in laypersons. We are currently designing a follow-up study including surgeons rather than laypersons with a longer warm-up exercise, which is more closely related to the final task.
Resumo:
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.
Resumo:
Participants in an immersive virtual environment interact with the scene from an egocentric point of view that is, where there bodies appear to be located rather than from outside as if looking through a window. People interact through normal body movements, such as head-turning,reaching, and bending, and within the tracking limitations move through the environment or effect changes within it in natural ways.
Resumo:
This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.
Resumo:
An experiment was carried out to examine the impact on electrodermal activity of people when approached by groups of one or four virtual characters at varying distances. It was premised on the basis of proxemics theory that the closer the approach of the virtual characters to the participant, the greater the level of physiological arousal. Physiological arousal was measured by the number of skin conductance responses within a short time period after the approach, and the maximum change in skin conductance level 5 s after the approach. The virtual characters were each either female or a cylinder of human size, and one or four characters approached each subject a total of 12 times. Twelve male subjects were recruited for the experiment. The results suggest that the number of skin conductance responses after the approach and the change in skin conductance level increased the closer the virtual characters approached toward the participants. Moreover, these response variables were inversely correlated with the number of visits, showing a typical adaptation effect. There was some evidence to suggest that the number of characters who simultaneously approached (one or four) was positively associated with the responses. Surprisingly there was no evidence of a difference in response between the humanoid characters and cylinders on the basis of this physiological data. It is suggested that the similarity in this quantitative arousal response to virtual characters and virtual objects might mask a profound difference in qualitative response, an interpretation supported by questionnaire and interview results. Overall the experiment supported the premise that people exhibit heightened physiological arousal the closer they are approached by virtual characters.
Resumo:
Tämä diplomityö on tehty osana HumanICT-projektia, jonka tavoitteena on kehittää uusi, virtuaalitekniikoita hyödyntävä, työkoneiden käyttäjäliityntöjen suunnittelumenetelmä. Työn tarkoituksena oli kehittää VTT:n Tuotteet ja tuotanto tutkimusyksikköön kuluvan Ihminen-kone-turvallisuus ryhmän nykyistä virtuaalitodellisuuslaboratoriota siten, että sitä voidaan käyttää työkoneiden suunnittelussa sekä monipuolisissa ergonomiatarkasteluissa. Itse ympäristön kehittäminen pitää sisällään uuden ohjainjärjestelmän suunnittelun sekä sen implementoinnin nykyisin käytössä olevaan virtuaaliympäristöön. Perinteisesti ohjaamosimulaattorit ovat olleet sovelluskohteisiin räätälöityjä, joten ne ovat kalliita ja niiden konfiguroinnin muuttaminen on vaikeaa, joskus jopa mahdotonta. Tämän työntarkoituksena oli kehittää PC-tietokoneeseen ja yleiseen käyttöjärjestelmään perustuva ohjainjärjestelmä, joka on nopeasti kytkettävissä erilaisiin virtuaaliympäristön sovelluksiin, kuten ohjaamomalleihin. Työssä tarkasteltiin myös tapoja mallintaa fysikaalisia ilmiöitä reaaliaikasovelluksissa, eli on-line simuloinnissa. Tämän tarkastelun perusteella etsittiin ja valittiin jatkokäsittelyyn ohjelmistoja, joiden reaaliaikaisen dynamiikan simulointialgoritmitolivat kaikkein kehittyneimpiä ja monipuolisia.
Resumo:
Diplomityossa kartoitetaan Visualisointiympäristön rakentamiseen ja toteuttamiseen soveltuvia tekniikoita. Kartoituksen perusteella laadittiin lista tarvittavista komponenteista Visualisointiympäristön toteuttamiseksi Lappeenrannan teknillisen yliopiston konetekniikan osastolle mekatroniikan ja virtuaalisuunnittelun laboratoriolle. Työssä tarkastellaan keinotodellisuuden ulottuvuuksia ja esitellään sen hyödyntämismahdollisuuksia eri aloilla nyt ja tulevaisuudessa. Keinotodellisuuteen liittyvät tekniikat eri toteuttamistapoineen esitellaan käyttäen esimerkkeinä tällä hetkellä markkinoilla olevia tuotteita. Lopuksi arvioitiin virtuaalitekniikan kehitystä ja sen merkitystä tulevaisuudessa. Tutkimus osoittaa, etta keinotodellisuudelle löytyy runsaasti sovelluksia eri aloilla, ja edullisen PC-tekniikan kehittyessä kustannukset laskevat jatkuvasti, jolloin vähitellen keinotodellisuus yleistyy.
Resumo:
Our body schema gives the subjective impression of being highly stable. However, a number of easily-evoked illusions illustrate its remarkable malleability. In the rubber-hand illusion, illusory ownership of a rubber-hand is evoked by synchronous visual and tactile stimulation on a visible rubber arm and on the hidden real arm. Ownership is concurrent with a proprioceptive illusion of displacement of the arm position towards the fake arm. We have previously shown that this illusion of ownership plus the proprioceptive displacement also occurs towards a virtual 3D projection of an arm when the appropriate synchronous visuotactile stimulation is provided. Our objective here was to explore whether these illusions (ownership and proprioceptive displacement) can be induced by only synchronous visuomotor stimulation, in the absence of tactile stimulation.