1000 resultados para Painting, Chinese
Resumo:
Induced spawning of grass carp (Ctenopharyngodon idellus) and bighead carp (Aristychthys nobilis) was carried out successfully in Sri Lanka for the first time in 1977 and 1978, respectively. This article describes the techniques involved in induced spawning in Sri Lanka at the Freshwater Fish Breeding and Experimental Station in Udawalawa.
Resumo:
Domestic cats and dogs are important companion animals and model animals in biomedical research. The cat has a highly conserved karyotype, closely resembling the ancestral karyotype of mammals, while the dog has one of the most extensively rearranged mammalian karyotypes investigated so far. We have constructed the first detailed comparative chromosome map of the domestic dog and cat by reciprocal chromosome painting. Dog paints specific for the 38 autosomes and the X chromosomes delineated 68 conserved chromosomal segments in the cat, while reverse painting of cat probes onto red fox and dog chromosomes revealed 65 conserved segments. Most conserved segments on cat chromosomes also show a high degree of conservation in G-banding patterns compared with their canine counterparts. At least 47 chromosomal fissions (breaks), 25 fusions and one inversion are needed to convert the cat karyotype to that of the dog, confirming that extensive chromosome rearrangements differentiate the karyotypes of the cat and dog. Comparative analysis of the distribution patterns of conserved segments defined by dog paints on cat and human chromosomes has refined the human/cat comparative genome map and, most importantly, has revealed 15 cryptic inversions in seven large chromosomal regions of conserved synteny between humans and cats.
Resumo:
Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equits burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
Conserved chromosomal segments in the black rhinoceros, Diceros bicornis (DB1, 2n = 84), and its African sister-species the white rhinoceros, Ceratotherim simum (CSI, 2n = 82), were detected using Burchell's zebra (Equus burchellii, EBU, 2n = 44) chromosome-specific painting probes supplemented by a subset of those developed for the horse (Equus caballus, ECA, 2n = 64). In total 41 and 42 conserved autosomal segments were identified in C simum and D. bicornis respectively. Only 21 rearrangements (20 fissions and I fusion) are necessary to convert the Burchell's zebra karyotype into that of the white rhinoceros. One fission distinguishes the D. bicornis and C simum karyotypes which, excluding hetero- chromatic differences, are identical in all respects at this level of resolution. Most Burchell's zebra chromosomes correspond to two rhinoceros chromosomes although in four instances (EBU 18, 19, 20 and 21) whole chromosome synteny has been retained among these species. In contrast, one rhinoceros chromosome (DBI1, CSI1) comprises two separate Burchell's zebra chromosomes (EBU11 and EBU17). In spite of the high diploid numbers of the two rhinoceros species their karyotypes are surprisingly conserved offering a glimpse of the putative ancestral perissodactyl condition and a broader understanding of genome organization in mammals. Copyright (C) 2003 S. Karger AG, Base
Resumo:
The Afrotheria, a supraordinal grouping of mammals whose radiation is rooted in Africa, is strongly supported by DNA sequence data but not by their disparate anatomical features. We have used flow-sorted human, aardvark, and African elephant chromosome painting probes and applied reciprocal painting schemes to representatives of two of the Afrotherian orders, the Tubulidentata (aardvark) and Proboscidea (elephants), in an attempt to shed additional light on the evolutionary affinities of this enigmatic group of mammals. Although we have not yet found any unique cytogenetic signatures that support the monophyly of the Afrotheria, embedded within the aardvark genome we find the strongest evidence yet of a mammalian ancestral karyotype comprising 2n = 44. This karyotype includes nine chromosomes that show complete conserved synteny to those of man, six that show conservation as single chromosome arms or blocks in the human karyotype but that occur on two different chromosomes in the ancestor, and seven neighbor-joining combinations (i.e., the synteny is maintained in the majority of species of the orders studied so far, but which corresponds to two chromosomes in humans). The comparative chromosome maps presented between human and these Afrotherian species provide further insight into mammalian genome organization and comparative genomic data for the Afrotheria, one of the four major evolutionary clades postulated for the Eutheria.
Resumo:
With complete sets of chromosome-specific painting probes derived from flow-sorted chromosomes of human and grey squirrel (Sciurus carolinensis), the whole genome homologies between human and representatives of tree squirrels (Sciurus carolinensis, Callosciurus erythraeus), flying squirrels (Petaurista albiventer) and chipmunks (Tamias sibiricus) have been defined by cross-species chromosome painting. The results show that, unlike the highly rearranged karyotypes of mouse and rat, the karyotypes of squirrels are highly conserved. Two methods have been used to reconstruct the genome phylogeny of squirrels with the laboratory rabbit (Oryctolagus cuniculus) as the out-group: ( 1) phylogenetic analysis by parsimony using chromosomal characters identified by comparative cytogenetic approaches; ( 2) mapping the genome rearrangements onto recently published sequence-based molecular trees. Our chromosome painting results, in combination with molecular data, show that flying squirrels are phylogenetically close to New World tree squirrels. Chromosome painting and G-banding comparisons place chipmunks ( Tamias sibiricus), with a derived karyotype, outside the clade comprising tree and flying squirrels. The superorder Glires (order Rodentia + order Lagomorpha) is firmly supported by two conserved syntenic associations between human chromosomes 1 and 10p homologues, and between 9 and 11 homologues.