609 resultados para PSEUDOMORPHIC INGAAS HEMT
Resumo:
We investigate the growth of III-V nanowires by MOCVD and the structural and optical properties of these nanowires. Binary and ternary nanowires of GaAs, InAs, InP, AlGaAs and InGaAs are achieved. We discuss the nucleation and growth issues involved in fabricating high quality nanowires suitable for device applications. We have fabricated and characterised a variety of axial and radial heterostructures including GaAs/InGaAs superlattices, and GaAs/AlGaAs core-shell and core-multishell nanowires. © 2007 IEEE.
Resumo:
We have investigated the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures, fabricated by metalorganic chemical vapor deposition. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices. We have developed a two-temperature growth procedure to optimize nanowire morphology. An initial high temperature step promotes nucleation and epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise radial growth. © 2007 IEEE.
Resumo:
The optical and structural properties of binary and ternary III-V nanowires including GaAs, InP, In(Ga)As, Al(Ga)As, and GaAs(Sb) nanowires by metal-organic chemical vapour deposition are investigated, Au colloidal nanoparticles are employed to catalyze nanowire growth. Zinc blende or wurtzite crystal structures with some stacking faults are observed for these nanowires by high resolution transmission electron microscope. In addition, the properties of heterostructure nanowires including GaAs-AlGaAs core-shell nanowires, GaAs-InAs nanowires, and GaAs-GaSb nanowires are reported. Single nanowire luminescence properties from optically bright InP nanowires are reported. Interesting phenomena such as two-temperature procedure, nanowire height enhancement of isolated ternary InGaAs nanowires, kinking effect of InAs-GaAs heterostructure nanowires, and unusual growth property of GaAs-GaSb heterostructure nanowires are investigated. These nanowires will play an essential role in future optoelectronic devices.
Resumo:
InGaAs quantum dots (QDs) and nanowires have been grown on GaAs by metal-organic chemical vapour deposition on GaAs (100) and (111)B substrates, respectively. InGaAs QD lasers were fabricated and characterised. Results show ground-state lasing at about 1150 nm in devices with lengths greater than 2.5 mm. We also observed a strong influence of nanowire density on nanowire height specific to nanowires with high indium composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Selective area epitaxy for applications in quantum-dot optoelectronic device integration is also discussed in this paper. ©2006 IEEE.
Resumo:
We have investigated the structural properties and photoluminescence of novel axial and radial heterostructure III-V nanowires, fabricated by metalorganic chemical vapour deposition. Segments of InGaAs have been incorporated within GaAs nanowires, to create axial heterostructure nanowires which exhibit strong photoluminescence. Photoluminescence is observed from radial heterostructure nanowires (core-shell nanowires), consisting of GaAs cores with AlGaAs shells. Core-multishell nanowires, of GaAs cores clad in several alternating layers of thick AlGaAs barrier shells and thin GaAs quantum well shells, exhibit a blue-shifted photoluminescence peak arising from quantum confinement effects. © 2006 Crown Copyright.
Resumo:
We review our results on integrated photonic devices fabricated using InGaAs quantum-dots. Selective-area metal organic chemical vapor deposition (MOCVD) is used to grow the active region with quantum dots emitting at different wavelengths for fabrication of the integrated devices. We will also review the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures grown by MOCVD. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with several alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices.
Resumo:
As an important step in understanding trap-related mechanisms in AlGaN/GaN transistors, the physical properties of surface states have been analyzed through the study of the transfer characteristics of a MISFET. This letter focused initially on the relationship between donor parameters (concentration and energy level) and electron density in the channel in AlGaN/GaN heterostructures. This analysis was then correlated to dc and pulsed measurements of the transfer characteristics of a MISFET, where the gate bias was found to modulate either the channel density or the donor states. Traps-free and traps-frozen TCAD simulations were performed on an equivalent device to capture the donor behavior. A donor concentration of 1.14× 1013 ∼ cm-2 with an energy level located 0.2 eV below the conduction band edge gave the best fit to measurements. With the approach described here, we were able to analyze the region of the MISFET that corresponds to the drift region of a conventional HEMT. © 1980-2012 IEEE.
Resumo:
Gallium nitride (GaN) has a bright future in high voltage device owing to its remarkable physical properties and the possibility of growing heterostructures on silicon substrates. GaN High Electron Mobility Transistors (HEMTs) are expected to make a strong impact in off line applications and LED drives. However, unlike in silicon-based power devices, the on-state resistance of HEMT devices is hugely influenced by donor and acceptor traps at interfaces and in the bulk. This study focuses on the influence of donor traps located at the top interface between the semiconductor layer and the silicon nitride on the 2DEG density. It is shown through TCAD simulations and analytical study that the 2DEG charge density has an 'S' shape variation with two distinctive 'flat' regions, wherein it is not affected by the donor concentration, and one linear region. wherein the channel density increases proportionally with the donor concentration. We also show that the upper threshold value of the donor concentration within this 'S' shape increases significantly with the AIGaN thickness and the Al mole fraction and is highly affected by the presence of a thin GaN cap layer. © 2013 IEEE.
Resumo:
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances. © 2014 AIP Publishing LLC.
Resumo:
The electro-absorption properties and Stark-shift of 1.3μm InGaAs quantum dot waveguide modulators are characterized under reverse bias. 2.5Gb/s data modulation is demonstrated for the first time with clear eye diagrams and error-free back-to-back performance. © 2007 Optical Society of America.
Resumo:
A new optimized structure of an UTC (uni-traveling-carrier) photodiode is developed and epitaxied by metal-organic chemical vapor deposition. We fabricated a UTC photodiode of 30 mu m in diameter. Theoretical simulation based on drift-diffusion model was used to analyze the space-charge-screening effect in UTC photodiode primarily in two aspects: the carrier concentrations and the space electric field. The simulation results were generally in agreement with the experimental data.
Resumo:
一种低温晶片键合的方法,其特征在于,包括如下步骤:步骤1:将单面抛光的Si外延片和InGaAs外延片用有机溶剂清洗,去除表面的有机物,该InGaAs外延片的底层为InP衬底;步骤2:再分别对Si外延片和InGaAs外延片进行表面处理,以去除表面的杂质离子、除碳和亲水性处理;步骤3:将Si外延片和InGaAs外延片进行贴合,贴合后的晶片对置于真空键合机内键合,进行第一次热处理,以驱除键合界面的水气;步骤4:对键合后的晶片进行减薄;步骤5:再对减薄后的晶片进行第二次热处理;步骤6:最后腐蚀掉键合晶片的InP衬底,完成低温晶片键合的制作。
Resumo:
一种取样光栅分布布拉格反射半导体激光器的制作方法,包括:在n型InP衬底上分别外延InP缓冲层和介质膜;在介质膜上刻出条形凹槽,并依次生长InGaAsP下限制层、InGaAsP/InGaAsP多量子阱、InGaAsP上限制层和InP光栅制作保护层;去除介质膜;刻出多条取样光栅窗口;制作取样光栅;腐蚀保护层;依次生长p-InP层、p-InGaAsP刻蚀阻止层、p-InP层和p+-InGaAs层;形成脊形波导;刻蚀形成电隔离沟;在p-InGaAsP刻蚀阻止层上进行He离子注入;在上述步骤制作的器件结构的上表面和脊形波导的侧面淀积介质绝缘层;在器件的上表面溅射p电极;将衬底减薄,并蒸发n电极,解理管芯,完成器件的制作。
Resumo:
一种倏逝波耦合型单一载流子行波光电探测器的制作方法,包括:在衬底上依次生长铟磷应力缓冲层至InGaAs接触层;在InGaAs接触层上生长一层氧化硅掩膜;将氧化硅掩膜的两侧刻蚀掉,再刻蚀掉氧化硅掩蔽条的两侧,得到深脊结构;湿法腐蚀掉部分深脊结构,形成入射窗口区;在深脊结构的两侧采用带胶剥离的方法制作N型金属欧姆接触;将衬底上至N型金属欧姆接触外侧边缘以外的各层刻蚀掉;保留入射窗口区一侧的各层,在衬底上形成台面结构;在深脊结构的上面经斜台面延伸至衬底上制作钛金行波电极结构的信号电极;在深脊结构两侧的N型金属欧姆接触上经斜台面延伸至衬底上制作钛金行波电极结构的接地电极;减薄解理。
Resumo:
Theoretical calculation of electronic energy levels of an asymmetric InAs/InGaAS/GaAS quantum-dots-in-a-well (DWELL) structure for infrared photodetectors is performed in the framework of effective-mass envelope-function theory. Our calculated results show that the electronic energy levels in quantum dots (QDs) increase when the asymmetry increases and the ground state energy increases faster than the excited state energies. Furthermore, the results also show that the electronic energy levels in QDs decrease as the size of QDs and the width of quantum well (QW) in the asymmetric DWELL structure increase. Additionally, the effects of asymmetry, the size of QDs and the width of QW on the response peak of asymmetry DWELL photodetectors are also discussed.