997 resultados para PREDATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the Southeast U.S. and Caribbean and are expected to expand into the Gulf of Mexico and Central and South America. Prior to this invasion little was known regarding the biology and ecology of these lionfishes. I provide a synopsis of chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and possible control and management strategies for the lionfish invasion. This information was collected by review of the literature and by direct field and experimental study. I confirm the existence of an unusual supraocular tentacle phenotype and suggest that the high prevalence of this phenotype in the Atlantic is not the result of selection, but likely ontogenetic change. To describe the trophic impacts of lionfish, I report a comprehensive assessment of diet that describes lionfish as a generalist piscivore that preys on over 40 species of teleost comprising more than 20 families. Next, I use the histology of gonads to describe both oogenesis and reproductive dynamics of lionfish. Lionfish mature relatively early and reproduce several times per month throughout the entire calendar year off North Carolina and the Bahamas. To investigate predation, an important component of natural mortality, I assessed the vulnerability of juvenile lionfish to predation by native serranids. Juvenile lionfish are not readily consumed by serranids, even after extreme periods of starvation. Last, I used a stage-based, matrix population model to estimate the scale of control that would be needed to reduce an invading population of lionfish. Together, this research provides the first comprehensive assessment on lionfish biology and ecology and explains a number of life history and ecological interactions that have facilitated the unprecedented and rapid establishment of this invasive finfish. Future research is needed to understand the scale of impacts that lionfish could cause, especially in coral reef ecosystems, which are already heavily stressed. This research further demonstrates the need for lionfish control strategies and more rigorous prevention and early detection and rapid response programs for marine non-native introductions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Octopuses are commonly taken as bycatch in many trap fisheries for spiny lobsters (Decapoda: Palinuridae) and can cause significant levels of within-trap lobster mortality. This article describes spatiotemporal patterns for Maori octopus (Octopus maorum) catch rates and rock lobster (Jasus edwardsii) mortality rates and examines factors that are associated with within-trap lobster mortality in the South Australian rock lobster fishery (SARLF). Since 1983, between 38,000 and 119,000 octopuses per annum have been taken in SARLF traps. Catch rates have fluctuated between 2.2 and 6.2 octopus/100 trap-lifts each day. There is no evidence to suggest that catch rates have declined or that this level of bycatch is unsustainable. Over the last five years, approximately 240,000 lobsters per annum have been killed in traps, representing ~4% of the total catch. Field studies show that over 98% of within-trap lobster mortality is attributable to octopus predation. Lobster mortality rates are positively correlated with the catch rates of octopus. The highest octopus catch rates and lobster mortality rates are recorded during summer and in the more productive southern zone of the fishery. In the southern zone, within-trap lobster mortality rates have increased in recent years, apparently in response to the increase in the number of lobsters in traps and the resultant increase in the probability of octopus encountering traps containing one or more lobsters. Lobster mortality rates are also positively correlated with soak-times in the southern zone fishery and with lobster size. Minimizing trap soak-times is one method currently available for reducing lobster mortality rates. More significant reductions in the rates of within-trap lobster mortality may require a change in the design of lobster traps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stomach contents of the minimal armhook squid (Berryteuthis anonychus) were examined for 338 specimens captured in the northeast Pacific during May 1999. The specimens were collected at seven stations between 145−165°W and 39−49°N and ranged in mantle length from 10.3 to 102.2 mm. Their diet comprised seven major prey groups (copepods, chaetognaths, amphipods, euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) and was dominated by copepods and chaetognaths. Copepod prey comprised four genera, and 86% by number of the copepods were from the genus Neocalanus. Neocalanus cristatus was the most abundant prey taxa, composing 50% by mass and 35% by number of the total diet. Parasagitta elegans (Chaetognatha) occurred in more stomachs (47%) than any other prey taxon. Amphipods occurred in 19% of the stomachs but composed only 5% by number and 3% by mass of the total prey consumed. The four remaining prey groups (euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) together composed <2% by mass and <1% by number of the diet. There was no major change in the diet through the size range of squid examined and no evidence of cannibalism or predation on other cephalopod species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We estimated the impact of striped bass (Morone saxatilis) predation on winter-run chinook salmon (Oncorhynchus tshawytscha) with a Bayesian population dynamics model using striped bass and winter-run chinook salmon population abundance data. Winter-run chinook salmon extinction and recovery probabilities under different future striped bass abundance levels were estimated by simulating from the posterior distribution of model parameters. The model predicts that if the striped bass population declines to 512,000 adults as expected in the absence of stocking, winter-run chinook salmon will have about a 28% chance of quasi-extinction (defined as three consecutive spawning runs of fewer than 200 adults) within 50 years. If stocking stabilizes the striped bass population at 700,000 adults, the predicted quasi-extinction probability is 30%. A more ambitious stocking program that maintains a population of 3 million adult striped bass would increase the predicted quasi-extinction probability to 55%. Extinction probability, but not recovery probability, was fairly insensitive to assumptions about density dependence. We conclude that winter-run chinook salmon face a serious extinction risk without augmentation of the striped bass population and that substantial increases in striped bass abundance could significantly increase the threat to winter-run chi-nook salmon if not mitigated by increasing winter chinook salmon survival in some other way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tope shark (Galeorhinus galeus) and thornback ray (Raja clavata) are the two most captured elasmobranch species by the Azorean bottom longline fishery. In order to better understand the trophic dynamics of these species in the Azores, the diets of thornback ray and tope shark caught in this area during 1996 and 1997 were analyzed to describe feeding patterns and to investigate the effect of sex, size, and depth and area of capture on diet. Thornback rays fed mainly upon fishes and reptants, but also upon polychaetes, mysids, natant crustaceans, isopods, and cephalopods. In the Azores, this species preyed more heavily upon fish compared with the predation patterns described in other areas. Differences in the diet may be due to differences in the environments (e.g. in the Azores, seamounts and oceanic islands are the major topographic features, whereas in all other studies, continental shelves have been the major topographic feature). No differences were observed in the major prey consumed between the sexes or between size classes (49−60, 61−70, 71−80, and 81−93 cm TL). Our study indicates that rays inhabiting different depths and areas (coastal or offshore banks) prey upon different resources. This appears to be related to the relative abundance of prey with habitat. Tope sharks were found to prey almost exclusively upon teleost fish: small shoaling fish, mainly boarfish (Capros aper) and snipefish (Macroramphosus scolopax), were the most frequent prey. This study illustrates that thornback rays and tope sharks are top predators in waters off the Azores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ecosystem approach to fisheries management requires an understanding of the impact of predatory fishes on the underlying prey resources. Defining trophic connections and measuring rates of food consumption by apex predators lays the groundwork for gaining insight into the role of predators and commercial fisheries in influencing food web structure and ecosystem dynamics.We analyzed the stomach contents of 545 common dolphinfish (Coryphaena hippurus) sampled from 74 sets of tuna purse-seine vessels fishing in the eastern Pacific Ocean (EPO) over a 22-month period. Stomach fullness of these dolphinfish and digestion state of the prey indicated that diel feeding periodicity varied by area and may be related to the digestibility and energy content of the prey. Common dolphinfish in the EPO appear to feed at night, as well as during the daytime. We analyzed prey importance by weight, numbers, and frequency of occurrence for five regions of the EPO. Prey importance varied by area. Flyingfishes, epipelagic cephalopods, tetraodontiform fishes, several mesopelagic fishes, Auxis spp., and gempylid fishes predominated in the diet. Ratios of prey length to predator length ranged from 0.014 to 0.720. Consumption-rate estimates averaged 5.6% of body weight per day. Stratified by sex, area, and length class, daily rations ranged up to 9.6% for large males and up to 19.8% for small dolphinfish in the east area (0–15°N, 111°W–coastline). Because common dolphinfish exert substantial predation pressure on several important prey groups, we concluded that their feeding ecology provides important clues to the pelagic food web and ecosystem structure in the EPO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Along the west coast of the United States, the potential impact of increasing pinniped populations on declining salmonid (Oncorhynchus spp.) stocks has become an issue of concern. Fisheries managers need species-specific estimates of consumption by pinnipeds to evaluate their impact on salmonid stocks. To estimate consumption, we developed a model that estimates diet composition by reconstructing prey biomass from fecal samples. We applied the model to data collected from harbor seals (Phoca vitulina) that are present year-round in the lower Columbia River where endangered stocks of salmonids pass as returning adults and as seaward-migrating smolts. Using the same data, we applied the split-sample frequency of occurrence model, which avoids reconstructing biomass by assuming that each fecal sample represents an equal volume of consumption and that within each sample each prey item represents an equal proportion of the volume. The two models for estimating diet composition yielded size-specific differences in consumption estimates that were as large as tenfold for the smallest and largest prey. Conclusions about the impact of harbor seal predation on adult salmonids, some of their largest prey species, remain uncertain without some appropriate rationale or further information (e.g. empirical captive studies) to discriminate between these models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bays and estuaries of the southeast United States coast generally are thought to serve as nursery areas for various species of coastal sharks, where juvenile sharks find abundant food and are less exposed to predation by larger sharks. Because these areas typically support substantial commercial and recreational fisheries, fishing mortality of sharks in the nurseries particularly by bycatch, may be significant. This two-year project assessed the relative importance of two estuaries of the southwest Florida Gulf coast, Tampa Bay and Charlotte Harbor/Pine Island Sound, as shark nursery areas, and examined potential fishing mortality of these young sharks in the nurseries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在北京东灵山地区对辽东栎的天然更新进行研究。辽东栎的结实具有大年现象(masting),大年现象十分复杂,在种群水平、个体之间都存在差异。 动物对辽东栎的天然更新有重要的影响。捕食和传播辽东栎坚果的脊椎动物至少包括小型啮齿目动物中的岩松鼠、花鼠、大仓鼠、社鼠、大林姬鼠和棕背鼠平,鸟类中的松鸦。岩松鼠、花鼠和大仓鼠有发达的颊囊,能够将坚果暂时放在颊囊中进行传播,岩松鼠有分散埋藏坚果的习性;松鸦能够将坚果放在素囊中进行长距离传播。成熟坚果在森林地表的消失非常快,少部分被脊椎动物就地消耗,大部分被传播到巢穴中或分散埋藏。成熟坚果的丢失存在时空差异。无脊椎动物中的昆虫对辽东栎去叶有重要影响。去叶与昆虫幼虫的密度以及长度显著相关。幼树去叶在辽东栎种群大树密度最高的地点最高,而在密度最低的地点最低。大树去叶在辽东栎种群总胸径面积最大的地点最大。 辽东栎实生苗在野外十分匮乏,可能是由于东灵山地区小型啮齿目动物缺乏天敌,使它们的活动十分强烈。它们有异常强大的捕食和搬运辽东栎坚果的能力,使能够逃逸捕食的坚果数量很少。现阶段辽东栎的更新几乎完全靠萌生苗进行,大树的生长大多弯曲不直。实生幼苗在小的林窗中的生长比在树冠下的生长好。综合考虑实生个体和萌生个体,50 龄林中种群大小结构稳定,能够长时间生存发展下去;30 龄林种群中个体间的竞争激烈,种群处于衰退状态。 研究结果建议:对辽东栎林的天然更新,应该采取综合治理的方法,充分考虑各种生物和非生物因素的影响,处理好生物因素的非生物因素的关系;人为进行适当干扰,例如在森林中创建适当大小的林窗,以更好地促进辽东栎的天然更新。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 1.对四川省岷江上游地区(茂县)的锐齿槲栎(Quercus aliena var. acuteserrata)天然次生林进行研究,发现:(1) 坚果完好比例约在14% ~26%之间,完好坚果的发芽率和发芽势都比较高,但在天然状况下能够留存到翌年5月的坚果几乎没有。因此,实生幼苗的天然补充就受到了严重的限制。(2) 林缘的幼苗密度低于所有其它生境的 (P<0.05),林中的幼苗密度最高,和林窗的比较有显著差异(P<0.05), 而和灌丛的比较则差异不显著(P>0.05)。在灌丛幼苗密度和林中以及林窗的比较都没有差异。动物对坚果的取食速度则是林中的最慢 (10.0%),林窗和林缘的基本相同(分别为61.1%和66.5%),取食速度都明显快于林中(P<0.01)。(3) 林中的幼苗在小于100 cm的各高度内都有大量分布,说明在林中树冠下幼苗是可以长期存在的,暗示在幼苗阶段的锐齿槲栎可能是耐荫的。(4) 在林中缺失幼树,在林缘则有包括幼树在内的完整的更新大小系列,表明林缘是更新的关键地点。(5) 在栎林的每一个大小级别上,萌生个体和实生个体都按各种比例伴生,说明导致萌生的干扰一直在发生,并可能在森林的更新中扮演重要角色;也说明该地区的锐齿槲栎林由萌生和实生起源的个体混合组成。 2.栎林是北半球温带森林的重要组成部分,因此栎林更新是全球森林更新研究的热点之一,而啮齿动物对栎林更新的影响则是关注的焦点。在2002~2003年,通过坚果标记研究了未被取食和遗弃坚果(即咬开后只有少部分被捕食后丢弃在林中的坚果)的健康比例,并定量测定了坚果的捕食、搬运、遗弃、丢弃、贮藏和留存等各种命运的比例和特点;对坚果也进行了各种人为的处理,以观测其命运和动物取食速度,发现:(1) 遗弃坚果中不健康坚果的比例比动物未取食的天然坚果中的比例有极显著的增加 (P>0.05),暗示啮齿动物一般是通过咬开坚果来识别坚果健康与否并决定是否捕食。(2) 根据坚果命运和对照相比改变与否以及如何改变,各种人工处理坚果的命运可以分为 4 类:① 坚果命运没有任何显著改变;② 坚果被就地捕食的速度降低,搬运的速度不变,最终搬运坚果的比例增加而就地捕食坚果的比例降低,留存坚果的比例偶尔能增加至0.2%;③ 坚果就地捕食的速度几乎降至0,搬运的速度则在下降一段时间后又上升,并且搬运作用持续了相对长的时间,最终搬运坚果的比例大大增加,就地捕食坚果的比例很低,留存率为0;④ 坚果被搬运和就地捕食的速度和比例都降低,留存坚果的比例相应的大大增加,甚至可以达到50%。(3) 命运得到显著改变的②、③、④类坚果所承受的人工处理按照作用方式又可以分为主要作用于坚果化学状态(即气味浓度)的处理、主要作用于坚果物理状态(颜色、形态、有无附属物等)的处理以及使坚果处于不同颜色背景的处理;其中主要作用于坚果化学状态的处理对坚果命运具有最重大的改变,如胶带包裹处理和烧焦处理;其它各种主要作用于坚果的物理状态和所处背景的处理对其命运则也具有相对轻微的改变。这一试验结果可能证明:啮齿动物在对坚果进行识别和取食选择等活动时主要依赖于嗅觉来感知坚果的可食性,但是能感觉物理状态和所处背景的视觉也起一定程度的作用。(4) 啮齿动物对栎树坚果进行就地捕食、遗弃、搬运、异地捕食、丢弃、贮藏等作用,使各种命运的坚果都具有一定的数量比例和特点,也提供了动物影响栎林更新的多种可能途径。 3.人工干扰是任何退化生态系统中都始终存在的重大问题。除了明显的砍伐或者采摘外,人工践踏也是一种重要的干扰,特别是在茂县的山林普遍被牛马不断的放牧的情况下,这个干扰的后果就更加显著。为此研究了人脚踩踏的路上的白车轴草和未踩踏草坪上白车轴草在最大叶长、株高、芽高、构件数量、构件平均鲜重、死叶数量、根长等构型指标,根、茎、叶三者的生物量(干重)及比例等生物量指标,平均花序数量、花平均数量等繁殖指标方面的不同,发现踩踏使白车轴草植株:(1) 株高降低,芽高降低,最大叶长变小,平均每厘米的构件数量增加,构件平均鲜重降低,根长度减小,死叶数量增加。(2) 平均花序数量下降,每花序的花平均数量下降。(3) 但是在生物量的分配上,根和茎的生物量没有显著的下降,但是叶的生物量显著减低。因为白车轴草的茎可以不断克隆繁殖,所以踩踏对其存活可能没有太大的影响,只是造成了植株的矮化和密集化,根也变短;但是对种子繁殖有重大影响,反映在平均花序数量和每花序平均花数的显著下降上。在生物量的分配中,作为主要的同化器官,叶的生物量显著下降,而根茎比没有变化。这可能说明这样的克隆植物其物质流动是呈现网络化的特征,具有比较强的抗干扰能力。 4.连香树、油松、日本落叶松、华山松油松混合林是茂县地区的几种主要的已经营造的林型或者树种。为了了解其20年来的营林效果,运用样方调查的方法测量了这几种树种或者林型的胸径、持水量、凋落物现存量、密度等,评价了它们在生长、营业循环和水土保持等方面的差异。结果表明:日本落叶松具有生长缓慢,凋落物现存量大,涵养水分能力良好的树种,值得推广;油松生长迅速,凋落物现存量巨大,涵养水分能力一般的树种,也可以大力栽植;油松和华山松的混交林具有比较大的蓄积量和较好的涵养水分的能力,可以推广;而连香树则做为生长速度中等,成材率低,凋落物现存量小,涵养水分能力差的树种,不应该进一步推广。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two species of mussels, the green mussel (Perna viridis) and the brown mussel (Perna indica) were cultured using the seed collected from the natural beds of the east and west coasts of India. The results of culture experiments are consolidated and the present status is reviewed. Although the culture experiments gave encouraging results, problems such as mooring of rafts in highly turbulent coastal waters, large scale seed requirements, control of predation, legal problems and marketing of end products require urgent attention before undertaking commercial operations. Some of the major problems of mussel culture are outlined for formulating effective management policies and their implementation for commercial mussel farming in India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the commencement of the exploitation of oceanic tuna resources of the Indian Ocean seventeen years ago, the hooked rates for the tuna species have declined in many areas of the Ocean but there are no evidences of such a trend in the case of the sharks. As a result, the percentage composition of sharks in the longline catches and the percentage of the tuna catch damaged by sharks show an increase. Hence there is an urgent need for innovation of the existing longline gear in order to increase the fishing efficiency for hooking the tuna species with a corresponding reduction in its efficiency for hooking sharks. At the beginning of this fishery, hooked sharks were discarded at sea, at a later stage the liver and fins were taken and the carcass discarded and presently the sharks are also brought along with the tuna catch. Though the shark meat has a very low market value it is brought in order to cover up for the declining tuna catches. Thus it has become very necessary to increase the demand for shark meat by developing products or by-products utilizing shark meat and ensuring the successful continuity of the tuna longline fishery. The pattern of distribution of shark species in the time grounds of the Pacific, Indian and Atlantic Oceans and also the predation of hooked tunas by sharks were discussed earlier (Sivasubranianiam 1963, 1964 and 1966). Some contribution to these studies is made in this paper based on new data become available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of over 500 zooplankton samples collected in Sri Lanka during 1965-1974, the species composition from different habitats is analysed. The zooplankton assemblage is typically tropical with relatively few species of Cladocera and Copepoda. The Rotifera include a large number of species of the genus Brachionus. The limnetic zooplankton resembles the pond zooplankton closely in that all the eurytopic species found in the different types of habitats, including ponds; also occur in the limnetic zooplankton. The large Cladocera belonging to the genus Daphnia are very rare. In general, large zooplankters are absent. The size composition of the zooplankton has a smaller range than in temperate regions. This is due to the absence of large-sized zooplankton species. The reasons for the differences in species variety and size composition between zooplankton of temperate and tropical regions is perhaps due to a number of factors. These include the effects of high and uniform temperatures, food availability and predation by fish and invertebrates.