936 resultados para POSTURAL INSTABILITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of the amplitude of two nonlinearly interacting waves is considered, via a set of coupled nonlinear Schrödinger-type equations. The dynamical profile is determined by the wave dispersion laws (i.e. the group velocities and the group velocity dispersion terms) and the nonlinearity and coupling coefficients, on which no assumption is made. A generalized dispersion relation is obtained, relating the frequency and wave-number of a small perturbation around a coupled monochromatic (Stokes') wave solution. Explicitly stability criteria are obtained. The analysis reveals a number of possibilities. Two (individually) stable systems may be destabilized due to coupling. Unstable systems may, when coupled, present an enhanced instability growth rate, for an extended wave number range of values. Distinct unstable wavenumber windows may arise simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Germline mutations in BRCA1 predispose carriers to a high
incidence of breast and ovarian cancers. The BRCA1 protein functions to maintain
genomic stability via important roles in DNA repair, transcriptional regulation, and
post-replicative repair. Despite functions in processes essential in all cells, BRCA1
loss or mutation leads to tumours predominantly in estrogen-regulated tissues.
Here, we aim to determine if endogenous estrogen metabolites may be an initiator
of genomic instability in BRCA1 deficient cells.

Methods: We analysed DNA DSBs by ?H2AX, 53BP1, and pATM1981
foci and neutral comet assay, estrogen metabolite concentrations by LC-MS/MS,
and BRCA1 transcriptional regulation of metabolism genes by ChIP-chip, ChIP,
and qRT-PCR.

Results: We show that estrogen metabolism is perturbed in BRCA1 deficient
cells resulting in elevated production of 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2), and decreased production of the protective metabolite
4-methoxyestradiol. We demonstrate that 2-OHE2 and 4-OHE2 treatment leads
to DNA double strand breaks (DSBs) in breast cells, and these DSBs were exacerbated
in both BRCA1 depleted cells and BRCA1 heterozygous cells (harbouring
185delAG mutation). Furthermore, the DSBs were not repaired efficiently in either
BRCA1 depleted or heterozygous cells, and we found that 2-OHE2 and 4-OHE2
treatment generates chromosomal aberrations in BRCA1 depleted cells. We suggest
that the increase in DNA DSBs in BRCA1 deficient cells is due to loss of
both BRCA1 transcriptional repression of estrogen metabolising genes (such as
CYP1A1 and CYP3A4) and loss of transcriptional activation of detoxification
genes (such as COMT).

Conclusions: We suggest that BRCA1 loss results in estrogen driven tumourigenesis
through a combination of increased expression of estrogen metabolising
enzymes and reduced expression of protective enzymes, coupled with a defect in
the repair of DNA DSBs induced by endogenous estrogen metabolites. The overall
effect being an exacerbation of genomic instability in estrogen regulated tissues in
BRCA1 mutation carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives rise to the magnetic instability, is maintained by the ambipolar electric field. This simple mechanism could be important for the magnetic field amplification in astrophysical jets or in the interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma cloud is modeled by immobile charges, and the mobile protons form a small ring close to the cloud's surface. The number density of mobile protons is thus less than that of the electrons. The protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a secondary TE wave. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769128]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experimental evidence for a Rayleigh-Taylor-like instability driven by radiation pressure of an ultraintense (1021W/cm2) laser pulse. The instability is witnessed by the highly modulated profile of the accelerated proton beam produced when the laser irradiates a 5 nm diamondlike carbon (90% C, 10% H) target. Clear anticorrelation between bubblelike modulations of the proton beam and transmitted laser profile further demonstrate the role of the radiation pressure in modulating the foil. Measurements of the modulation wavelength, and of the acceleration from Doppler-broadening of back-reflected light, agree quantitatively with particle-in-cell simulations performed for our experimental parameters and which confirm the existence of this instability. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that cosmic rays form filamentary structures in the precursors of supernova remnant shocks due to their self-generated magnetic fields. The cosmic ray filamentation results in the growth of a long-wavelength instability, and naturally couples the rapid non-linear amplification on small scales to larger length-scales. Hybrid magnetohydrodynamics-particle simulations are performed to confirm the effect. The resulting large-scale magnetic field may facilitate the scattering of high-energy cosmic rays as required to accelerate protons beyond the knee in the cosmic ray spectrum at supernova remnant shocks. Filamentation far upstream of the shock may also assist in the escape of cosmic rays from the accelerator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shear instability of the nanoscrystalline 3C-SiC during nanometric cutting at a cutting speed of 100?m/s has been investigated using molecular dynamics simulation. The deviatoric stress in the cutting zone was found to cause sp3-sp2 disorder resulting in the local formation of SiC-graphene and Herzfeld-Mott transitions of 3C-SiC at much lower transition pressures than that required under pure compression. Besides explaining the ductility of SiC at 1500?K, this is a promising phenomenon in general nanoscale engineering of SiC. It shows that modifying the tetrahedral bonding of 3C-SiC, which would otherwise require sophisticated pressure cells, can be achieved more easily by introducing non-hydrostatic stress conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the "knee" at 10(15.5) eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.