696 resultados para POLYANILINE NANOFIBERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile. butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those employed in conventional lead-acid batteries. Commercial-grade 6V/3.5 Ah (C-20-rate) lead-acid batteries have been assembled and characterized employing positive and negative plates constituting these grids. The specific energy of such a lead-acid battery is about 50 Wh/kg. The batteries can withstand fast charge-discharge duty cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coefficient of thermochromism of polyaniline solutions has been found to be solvent dependent and the solvent effect is not negligible. Hence, thermochromism of polyaniline solutions cannot be explained solely on the basis of conformational change induced by a change in temperature. Further, comparison of the solvatochromism of polyaniline and polytoluidine shows a higher solvatochromic shift for the former. It implies that the higher energy associated with the exciton peak of polytoluidine is not due to the higher ring torsional angle induced by the higher steric repulsion of the methyl group, as widely accepted, but is due to its less solvatochromic red-shift as compared to polyaniline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes the results of the preparation and characterization of self-doped conducting copolymers of aniline and toluidine with m-aminobenzene sulfonic acid. The copolymers have an intrinsic acid group that is capable of doping polyaniline. Spectroscopic, morphological, and electrical conductivity studies have provided insight into the structural and electronic properties of the copolymers. The differences in the properties of polyaniline and polytoluidine due to the sulfonic acid ring substituent on the phenyl ring are discussed. The scanning electron micrographs of the copolymers reveal regions of sharp-edged, needle-shaped structures, whereas the X-ray diffraction patterns show that the copolymers are relatively more crystalline in nature. (C) 2002 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract | Molecular self-assembly plays a vital role in the construction of various nanostructures using the ‘bottom-up’ approach. Peptides have been considered important bio-molecular building blocks for different nanoscale structures as they are biocompatible, biodegradable, generally non-toxic and can be attuned to environmental responses like pH, temperature, salt concentration and others. Peptide based nanostructures can offer various wonderful biological applications in tissue engineering, cell culture, regenerative medicine and drug delivery. In this review, the construction of short peptide-based different nanostructures including nanotubes, nanovesicles and nanofibers, short peptide-based nanoporous materials, short peptide-based nanofibrous hydrogels and nanovesicles for various biological applications has been discussed. Moreover, morphological transformations from one nanoscopic structure to an other type of nanostructure (e.g., nanotubes to nanovesicles) are also clearly discussed in this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-quality self-assembled V(2)O(5) nanofiber-bundles (NBs) are synthesized by a simple and direct hydrothermal method using a vanadium(V) hydroxylamido complex as a vanadium source in the presence of HNO(3). The possible reaction pathway for the formation of V(2)O(5) NBs is discussed and demonstrated that HNO(3) functions both as an oxidizing and as an acidification agent. V(2)O(5) NBs are single-crystals of an orthorhombic phase that have grown along the [010] direction. A bundle is made of indefinite numbers of homogeneous V(2)O(5) nanofibers where nanofibers have lengths up to several micrometres and widths ranging between 20 and 50 nm. As-prepared V(2)O(5) NBs display a high electrochemical performance in a non-aqueous electrolyte as a cathode material for lithium ion batteries. Field emission properties are also investigated which shows that a low turn-on field of similar to 1.84 V mu m(-1) is required to draw the emission current density of 10 mu Lambda cm(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state polymer electrolytes possess high conductivity and have advantages compared with their liquid counterparts. The polyethylene oxide (PEO)-based polymer is a good candidate for this purpose. The PEO/SnCl2/polyaniline composite (PSP composites) at different weight percentages were prepared in anhydrous acetonitrile media. Structural studies were carried out of the prepared composites by X-ray diffraction, Fourier transmission infrared spectroscopy, and surface morphology by scanning electron microscopy. The sigma (dc) was carried out by a two-probe method, and it is found that the conductivity increases with an increase in temperature. The temperature-dependent conductivity of the composites exhibits a typical semi-conducting behavior and hence can be explained by the 1D variable range hopping model proposed by Mott. The electrochemical cell parameters for battery applications at room temperature have also been determined. The samples are fabricated for battery application in the configuration of Na: (PSP): (I-2 + C + sample), and their experimental data are measured using Wagner's polarization technique. The cell parameters result in an open-circuit voltage of 0.83 V and a short-circuit current of 912 mu A for PSP (70:30:10) composite. Hence, these composites can be used in polymer electrolyte studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of scaffolds for neural tissue engineering application requires an understanding of cell adhesion, proliferation, and migration of neuronal cells. Considering the potential application of carbon as scaffold materials and the lack of understanding of compatibility of amorphous carbon with neuronal cells, the carbon-based materials in the forms of carbon films and continuous electrospun carbon nanofibers having average diameter of approximate to 200 nm are being investigated with or without ultraviolet (UV) and oxy-plasma (OP) treatments for cytocompatibility property using mouse Neuroblastoma (N2a) and rat Schwann cells (RT4-D6P2T). The use of Raman spectroscopy in combination with Fourier transform infrared (FTIR) and X-ray diffraction establishes the amorphous nature and surface-bonding characteristics of the studied carbon materials. Although both UV and OP treatments make carbon surfaces more hydrophilic, the cell viability of N2a cells is statistically more significant on OP treated fibers/films compared to UV fiber/film substrates after 4 days in culture. The electrospun carbon fibrous substrate provides the physical guidance to the cultured Schwann cells. Overall, the experimental results of this study demonstrate that the electrospun amorphous carbon nanofibrous scaffolds can be used as a suitable biomaterial substrate for supporting cell adhesion and proliferation of neuronal cells in the context of their applications as artificial nerve implants. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blending of perfluorinated bile ester derivatives with the gelator 2,3-didecyloxyanthracene (DDOA) yields a new class of hybrid organo- and aerogels displaying a combination of optical and mechanical properties that differ from those of pure gels. Indeed, the nanofibers constituting the hybrid organogels emit polarized blue light and display dichroic near-UV absorption via the achiral DDOA molecules, thanks to their association with a chiral bile ester. Moreover, the thermal stability and the mechanical yield stress of the mixed organogels in DMSO are enhanced for blends of DDOA with the deoxycholic gelator (DC11) having a C-11 chain, as compared to the pure components' gels. When the chain length of the ester is increased to C-13 (DC13) a novel compound for aerogel formation directly in scCO(2) is obtained under the studied conditions. A mixture of this compound with DDOA is also able to gelate scCO(2) leading to novel composite aerogel materials. As revealed by SAXS measurements, the hybrid and the pure DDOA and DC13 aerogels display cell parameters that are very similar. These SAXS experiments suggest that crystallographic conditions are very favorable for the growth of hybrid molecular arrangements in which DDOA and DC13 units could be interchanged. Specific molecular interactions between two components are not always a pre-requisite condition for the formation of a hybrid nanostructured material in which the components mutually induce properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of steroid dimers (bile acid derivatives) linked through ester functionalities were synthesized, which gelled various aromatic solvents. The organogels formed by the three dimeric ester molecules showed birefringent textures and fibrous nature by polarizing optical microscopy and scanning electron microscopy, respectively. A detailed rheological study was performed to estimate the mechanical strengths of two sets of organogels. In these systems, the storage modulus varied in the range of 0.8-3.5 X 10(4) at 1% w/v of the organogelators. The exponents of scaling of the storage modulus and yield stress of the two systems agreed well with those expected for viscoelastic soft colloidal gels with fibrillar flocs. The nanofibers in the organogel were utilized to engineer gold nanoparticles of different sizes and shapes and generate new gel-nanoparticle hybrid materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of neuroblastoma (N2a) and Schwann cells has been explored on polymer derived carbon substrates of varying micro and nanoscale geometries: resorcinol-formaldehyde (RE) gel derived carbon films and electrospun nanofibrous (similar to 200 nm diameter) mat and SU-8 (a negative photoresist) derived carbon micro-patterns. MTT assay and complementary lactate dehydrogenase (LDH) assay established cytocompatibility of RE derived carbon films and fibers over a period of 6 days in culture. The role of length scale of surface patterns in eliciting lineage-specific adaptive response along, across and on the interspacing between adjacent micropatterns (i.e., ``on'', ``across'' and ``off'') has been assayed. Textural features were found to affect 3',5'-cyclic AMP sodium salt-induced neurite outgrowth, over a wide range of length scales: from similar to 200 nm (carbon fibers) to similar to 60 mu m (carbon patterns). Despite their innate randomness, carbon nanofibers promoted preferential differentiation of N2a cells into neuronal lineage, similar to ordered micro-patterns. Our results, for the first time, conclusively demonstrate the potential of RE-gel and SU-8 derived carbon substrates as nerve tissue engineering platforms for guided proliferation and differentiation of neural cells in vitro. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schottky barrier devices of metal/semiconductor/metal structure were fabricated using organic semiconductor polyaniline (PANI) and aluminium thin film cathode. Aluminium contacts were made by thermal evaporation technique using two different forms of metals (bulk and nanopowder). The structure and surface morphology of these films were investigated by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Grain size of the as-deposited films obtained by Scherrer's method, modified Williamson-Hall method, and SEM were found to be different. Current-voltage (I-V) characteristic of Schottky barrier device structure indicates that the calculated current density (J) for device fabricated from aluminium nanopowder is more than that from aluminium in bulk form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interfacing of aromatic molecules with biomolecules to design functional molecular materials is a promising area of research. Intermolecular interactions determine the performance of these materials and therefore, precise control over the molecular organization is necessary to improve functional properties. Herein we describe the tunable biomimetic molecular engineering of a promising n-type organic semiconductor, naphthalene diimide (NDI), in the solid state by introducing minute structural mutations in the form of amino acids with variable Ca-functionality. For the first time we could achieve all four possible crystal packing modes, namely cofacial, brickwork, herringbone and slipped stacks of the NDI system. Furthermore, amino acid conjugated NDIs exhibit ultrasonication induced organogels with tunable visco-elastic and temperature responsive emission properties. The amino acid-NDI conjugates self-assemble into 0D nanospheres and 1D nanofibers in their gel state while the ethylamine-NDI conjugate forms 2D sheets from its solution. Photophysical studies indicated the remarkable influence of molecular ordering on the absorption and fluorescence properties of NDIs. Interestingly, the circular dichroism (CD) and X-ray diffraction (XRD) studies revealed the existence of helical ordering of NDIs in both solution and solid state. The chiral amino acids and their conformations with respect to the central NDI core are found to influence the nature of the helical organization of NDIs. Consequently, the origin of the preferential handedness in the helical organization is attributed to transcription of chiral information from the amino acid to the NDI core. On account of these unique properties, the materials derived from NDI-conjugates might find a wide range of future interdisciplinary applications from materials to biomedicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 M) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and PI tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. (C) 2014 Elsevier Ltd. All rights reserved.