930 resultados para PLATINUM CLUSTERS
Resumo:
Aims: This study aimed to classify alcohol-dependent outpatients on the basis of clinical factors and to verify if the resulting types show different treatment retention. Methods: The sample comprised 332 alcoholics that were enrolled in three different pharmacological trials carried out at Sao Paulo University, Brazil. Based on four clinical factors problem drinking onset age, familial alcoholism, alcohol dependence severity, and depression - K-means cluster analysis was performed by using the average silhouette width to determine the number of clusters. A direct logistic regression was performed to analyze the influence of clusters, medication groups, and Alcoholics Anonymous ( AA) attendance in treatment retention. Results: Two clusters were delineated. The cluster characterized by earlier onset age, more familial alcoholism, higher alcoholism severity, and less depression symptoms showed a higher chance of discontinuing the treatment, independently of medications used and AA attendance. Participation in AA was significantly related to treatment retention. Discussion: Health services should broaden the scope of services offered to meet heterogeneous needs of clients, and identify treatment practices and therapists which improve retention. Information about patients' characteristics linked to dropout should be used to make treatment programs more responsive and attractive, combining pharmacological agents with more intensive and diversified psychosocial interventions. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Three nanostructured platinum-niobium supported on Vulcan XC-72R carbon black materials were prepared as catalysts for the ethanol electroxidation: (i) deposition of platinum and niobium on Vulcan XC-72R carbon black, (ii) platinum decorated on a mixture of commercial amorphous Nb2O5/carbon black, and (iii) the same than ii but using crystalline Nb2O5, by reduction of the precursors with sodium borohydride in ethanol. All the catalysts showed platinum crystal sizes in the range of 3-4 nm, with no or little modification of the lattice parameter. The analyses of the electronic structure from the XANES region of the XAS spectra displayed some interactions between platinum and niobium, despite the niobium was primarily in the form of pentoxide in all the catalysts. CO stripping exhibited a promising low onset potential and a large current density, especially in the case of the deposited catalyst. Ethanol electroxidation experiments revealed that the Pt-Nb(2)O(5)crystalline/C generated the largest current. However it was not effective to completely oxidize ethanol, leading to acetic acid as the main product. In this sense, the highest efficiency for the complete oxidation of ethanol was obtained for the deposited catalyst. These results were interpreted in terms of the physico-chemical characteristic displayed by the different catalysts. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040210jes] All rights reserved.
Resumo:
Objective The Brazilian National Hansens Disease Control Program recently identified clusters with high disease transmission. Herein, we present different spatial analytical approaches to define highly vulnerable areas in one of these clusters. Method The study area included 373 municipalities in the four Brazilian states Maranha o, Para ', Tocantins and Piaui '. Spatial analysis was based on municipalities as the observation unit, considering the following disease indicators: (i) rate of new cases / 100 000 population, (ii) rate of cases < 15 years / 100 000 population, (iii) new cases with grade-2 disability / 100 000 population and (iv) proportion of new cases with grade-2 disabilities. We performed descriptive spatial analysis, local empirical Bayesian analysis and spatial scan statistic. Results A total of 254 (68.0%) municipalities were classified as hyperendemic (mean annual detection rates > 40 cases / 100 000 inhabitants). There was a concentration of municipalities with higher detection rates in Para ' and in the center of Maranha o. Spatial scan statistic identified 23 likely clusters of new leprosy case detection rates, most of them localized in these two states. These clusters included only 32% of the total population, but 55.4% of new leprosy cases. We also identified 16 significant clusters for the detection rate < 15 years and 11 likely clusters of new cases with grade-2. Several clusters of new cases with grade-2 / population overlap with those of new cases detection and detection of children < 15 years of age. The proportion of new cases with grade-2 did not reveal any significant clusters. Conclusions Several municipality clusters for high leprosy transmission and late diagnosis were identified in an endemic area using different statistical approaches. Spatial scan statistic is adequate to validate and confirm high-risk leprosy areas for transmission and late diagnosis, identified using descriptive spatial analysis and using local empirical Bayesian method. National and State leprosy control programs urgently need to intensify control actions in these highly vulnerable municipalities.
Resumo:
An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt-UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 mu mol?L-1 with a detection limit of 40.5 nmol?L-1. The repeatability of current responses for injections of 5 mu mol?L-1 NE was evaluated to be 4.0?% (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt-UMEAs.
Resumo:
A general strategy for the assembly of dendrimeric metallo-cluster species based on tritopic trinuclear ruthenium acetate complexes is demonstrated. First, a central core consisting of a [Ru3O(CH3COO)(6)(TPEB)(3)]PF6 complex (G0), where TPEB is the tripodal 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene ligand, was synthesized and then reacted with the end-capping complex [Ru3O(CH3COO)(6)(py)(2)(MeOH)]PF6, thus composing the first generation shell of a dendrimer encompassing twenty-one ruthenium ions (G1). The core and dendrimeric complexes were characterized by elemental analysis, UV-Vis, H-1 NMR, ESI-MS spectrometry and Differential pulse voltammetry. All results were consistent with the structure of that multinuclear cationic dendrimeric species. The isotopologic profile of daughter fragments and the strength of the metal-ligand bonds were carefully investigated providing the fragmentation pathway for the metallo-dendrimer upon ESI-MS dissociation conditions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present an analysis of observations made with the Arcminute Microkelvin Imager (AMI) and the CanadaFranceHawaii Telescope (CFHT) of six galaxy clusters in a redshift range of 0.160.41. The cluster gas is modelled using the SunyaevZeldovich (SZ) data provided by AMI, while the total mass is modelled using the lensing data from the CFHT. In this paper, we (i) find very good agreement between SZ measurements (assuming large-scale virialization and a gas-fraction prior) and lensing measurements of the total cluster masses out to r200; (ii) perform the first multiple-component weak-lensing analysis of A115; (iii) confirm the unusual separation between the gas and mass components in A1914 and (iv) jointly analyse the SZ and lensing data for the relaxed cluster A611, confirming our use of a simulation-derived masstemperature relation for parametrizing measurements of the SZ effect.
Resumo:
We present a new method to quantify substructures in clusters of galaxies, based on the analysis of the intensity of structures. This analysis is done in a residual image that is the result of the subtraction of a surface brightness model, obtained by fitting a two-dimensional analytical model (beta-model or Sersic profile) with elliptical symmetry, from the X-ray image. Our method is applied to 34 clusters observed by the Chandra Space Telescope that are in the redshift range z is an element of [0.02, 0.2] and have a signal-to-noise ratio (S/N) greater than 100. We present the calibration of the method and the relations between the substructure level with physical quantities, such as the mass, X-ray luminosity, temperature, and cluster redshift. We use our method to separate the clusters in two sub-samples of high-and low-substructure levels. We conclude, using Monte Carlo simulations, that the method recuperates very well the true amount of substructure for small angular core radii clusters (with respect to the whole image size) and good S/N observations. We find no evidence of correlation between the substructure level and physical properties of the clusters such as gas temperature, X-ray luminosity, and redshift; however, analysis suggest a trend between the substructure level and cluster mass. The scaling relations for the two sub-samples (high-and low-substructure level clusters) are different (they present an offset, i. e., given a fixed mass or temperature, low-substructure clusters tend to be more X-ray luminous), which is an important result for cosmological tests using the mass-luminosity relation to obtain the cluster mass function, since they rely on the assumption that clusters do not present different scaling relations according to their dynamical state.
Resumo:
The physical properties of small rhodium clusters, Rh-n, have been in debate due to the shortcomings of density functional theory (DFT). To help in the solution of those problems, we obtained a set of putative lowest energy structures for small Rh-n (n = 2-15) clusters employing hybrid-DFT and the generalized gradient approximation (GGA). For n = 2-6, both hybrid and GGA functionals yield similar ground-state structures (compact), however, hybrid favors compact structures for n = 7-15, while GGA favors open structures based on simple cubic motifs. Thus, experimental results are crucial to indicate the correct ground-state structures, however, we found that a unique set of structures (compact or open) is unable to explain all available experimental data. For example, the GGA structures (open) yield total magnetic moments in excellent agreement with experimental data, while hybrid structures (compact) have larger magnetic moments compared with experiments due to the increased localization of the 4d states. Thus, we would conclude that GGA provides a better description of the Rh-n clusters, however, a recent experimental-theoretical study [ Harding et al., J. Chem. Phys. 133, 214304 (2010)] found that only compact structures are able to explain experimental vibrational data, while open structures cannot. Therefore, it indicates that the study of Rh-n clusters is a challenging problem and further experimental studies are required to help in the solution of this conundrum, as well as a better description of the exchange and correlation effects on the Rh n clusters using theoretical methods such as the quantum Monte Carlo method.
Resumo:
Aims. We studied four young star clusters to characterise their anomalous extinction or variable reddening and asses whether they could be due to contamination by either dense clouds or circumstellar effects. Methods. We evaluated the extinction law (R-V) by adopting two methods: (i) the use of theoretical expressions based on the colour-excess of stars with known spectral type; and (ii) the analysis of two-colour diagrams, where the slope of the observed colour distribution was compared to the normal distribution. An algorithm to reproduce the zero-age main-sequence (ZAMS) reddened colours was developed to derive the average visual extinction (A(V)) that provides the closest fit to the observational data. The structure of the clouds was evaluated by means of a statistical fractal analysis, designed to compare their geometric structure with the spatial distribution of the cluster members. Results. The cluster NGC 6530 is the only object of our sample affected by anomalous extinction. On average, the other clusters suffer normal extinction, but several of their members, mainly in NGC 2264, seem to have high R-V, probably because of circumstellar effects. The ZAMS fitting provides A(V) values that are in good agreement with those found in the literature. The fractal analysis shows that NGC 6530 has a centrally concentrated distribution of stars that differs from the substructures found in the density distribution of the cloud projected in the A(V) map, suggesting that the original cloud was changed by the cluster formation. However, the fractal dimension and statistical parameters of Berkeley 86, NGC 2244, and NGC 2264 indicate that there is a good cloud-cluster correlation, when compared to other works based on an artificial distribution of points.
Resumo:
Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60 <= Z <= 78. The new isotopes were unambiguously identified in reactions with a U-238 beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Deutsche Forschungsgemeinschaft [SFB 858]
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.
Resumo:
The encapsulation of magnetic transition-metal (TM) clusters inside carbon cages (fullerenes, nanotubes) has been of great interest due to the wide range of applications, which spread from medical sensors in magnetic resonance imaging to photonic crystals. Several theoretical studies have been reported; however, our atomistic understanding of the physical properties of encapsulated magnetic TM 3d clusters is far from satisfactory. In this work, we will report general trends, derived from density functional theory within the generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof (PBE), for the encapsulation properties of the TMm@C-n (TM = Fe, Co, Ni; m = 2-6, n = 60,70,80,90) systems. Furthermore, to understand the role of the van der Waals corrections to the physical properties, we employed the empirical Grimme's correction (PBE + D2). We found that both PBE and PBE + D2 functionals yield almost the same geometric parameters, magnetic and electronic properties, however, PBE + D2 strongly enhances the encapsulation energy. We found that the center of mass of the TMm clusters is displaced towards the inside C-n surfaces, except for large TMm clusters (m = 5 and 6). For few cases, e. g., Co-4 and Fe-4, the encapsulation changes the putative lowest-energy structure compared to the isolated TMm clusters. We identified few physical parameters that play an important role in the sign and magnitude of the encapsulation energy, namely, cluster size, fullerene equatorial diameter, shape, curvature of the inside C-n surface, number of TM atoms that bind directly to the inside C-n surface, and the van der Waals correction. The total magnetic moment of encapsulated TMm clusters decreases compared with the isolated TMm clusters, which is expected due to the hybridization of the d-p states, and strongly depends on the size and shape of the fullerene cages.
Resumo:
We present a study of the stellar parameters and iron abundances of 18 giant stars in six open clusters. The analysis was based on high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT-UT2). The results complement our previous study where 13 clusters were already analyzed. The total sample of 18 clusters is part of a program to search for planets around giant stars. The results show that the 18 clusters cover a metallicity range between -0.23 and +0.23 dex. Together with the derivation of the stellar masses, these metallicities will allow the metallicity and mass effects to be disentangled when analyzing the frequency of planets as a function of these stellar parameters.
Resumo:
An interesting method to investigate the effect of fuel crossover in low temperature fuel cells consists of studying the open circuit interaction between the reducing fuel and an oxide-covered catalyst. Herein we report the experimental study of the open circuit interaction between borohydride and oxidized platinum surfaces in alkaline media. When compared to the case of hydrogen and other small organic molecules, two remarkable new features were observed. Firstly, the interaction with borohydride resulted in a very-fast reduction process with transient times about two to three orders of magnitude smaller. The second peculiarity was that the decrease of the open circuit potential was found to occur in two-stages and this, previously unseen, feature was correlated with the two-hump profile found in the backward sweep in the cyclic voltammogram The consequences of our findings are discussed in connection with fundamental and applied aspects. (C) 2011 Elsevier B.V All rights reserved.