923 resultados para PHYSICAL RADIATION EFFECTS
Resumo:
Physical exercise and statins, recommended interventions to dyslipidaemia treatment, are independently related to cardiomyocytes alterations, characterized by miocardic hypertrophy and apoptosis, respectively. Thus, the objective of the present study was to analyze the effects of statin and aerobic physical exercise association in the morphometric parameters of cardiac cell nucleus. 40 male rats adults were divided into four groups: exercised (DE); sedentary (DS), exercised and statin use (DES); sedentary and statin use (DSS). The animals received during the whole experimental period a hiperlipidic diet added 20% of coconut oil and 1.25% of cholesterol; after 30 days of its ingestion, a blood collection was made to verify the dyslipidaemia. Simvastatin (20 mg) was taken five days a week, during eight weeks. During this period, the animals exercised 60 minutes daily in the treadmill. After the last day of the protocol, the cardiac muscle was collected and maintained in liquid nitrogen (-180 degrees C); the cuts were stained by Hematoxilin-Eosin method, and the cardiac fibers were submitted to the nuclear morphometric analyses. The data were analyzed using descriptive analyses, paired T test, Kruskal-Wallis test and Dunn post hoc test; for all analyses, it was adopted p<0.05. It was verified that the group receiving statin presented values statistically significant in comparison to the other groups, in the tridimensional and linear variables. The exercised and statin group, the values obtained in the morphometric analyses were similar to the control group. It is suggested that statins alone can cause alterations in the nucleus of cardiac cells that can be related to apoptosis occurrence and, when exercise is practiced associated to statin administration, the effects of statin can be reduced, what can be related to beneficial adaptations of cardiac mitochondrial in response to physical exercise, turning them more resistant to apoptotic stimuli.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
To investigate the influence of short-term physical training on IGF-I concentrations in diabetic rats, male wistar rats were distributed into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes was induced by Alloxan (32 mg/kg b.w.) and training protocol consisted of swimming 1 h/day, 5 days/week, during 4 weeks, supporting 5% b.w. At the end of this period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin, IGF-I and hematocrit. Liver samples were used to determine glycogen, protein, DNA and IGF-I concentrations. Diabetes reduced insulin and IGF-I concentrations in blood and liver protein, ratio protein/DNA and IGF-I concentrations in liver and increased glycemia. Physical training reduced serum glucose and recovered hepatic glycogen stores in diabetic rats and reduced serum and liver IGF-I concentrations. In conclusion, short-term physical training improved the metabolic conditions of diabetic rats, despite of impairing liver and blood IGF-I concentrations.
Resumo:
Aims: This study aims to investigate the influence of physical training on the immune system of diabetic rats. Materials and Methods: Adult male Wistar rats were distributed into Sedentary Control (SC), Trained Control (TC), Sedentary Diabetic (SD) and Trained Diabetic (TD) groups were used. Diabetes was induced by alloxan (32 mg/bw-i.v.). Training protocol consisted of swimming, at 32 18C, one hour/day, five days/week, supporting an overload equivalent to 5 of the body weight, during four weeks. At the end of the experiment the rats were sacrificed by decapitation and blood samples were collected for glucose, insulin, albumin, hematocrit determinations, total and differential leukocyte counting. Additionally, liver samples for glycogen analyses were obtained. Results: The results were analyzed by one way at a significance level of 5. Diabetes reduced blood insulin, liver glycogen stores and increased blood glucose and neutrophil count. Physical training restored glycemia, liver glycogen levels, neutrophils and lymphocytes count in diabetic rats. Conclusions: In summary, physical training was able to improve metabolic and immunological aspects in the experimental diabetic rats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study investigated the effects of swimming training and metformin on metabolic aspects of obese rats. Wistar rats were divided into control (C), obese (O), Trained Obese (TO) and metformin obese (MO) groups. Obesity was induced by subcutaneous monosodium glutamate injection (4 mg/g body weight). Exercise program consisted in swimming 1 h/day, 5 days/week, for 8 weeks, supporting a load corresponding to 5% of body weight. Metformin was dissolved in the drinking water (1.4 mg/ml) for 8 weeks. At the end of the experimental period, rats were sacrificed and blood was collected for determinations of serum glucose, insulin and triglycerides and hematocrit. Samples of gastrocnemius muscle and liver were removed to evaluate triglycerides content MSG-induced obesity, increased serum glucose, insulin and triglycerides, while physical training was able to recover serum glucose and insulin and metformin treatment recovered serum insulin and slightly reduced the serum glucose. MSG-induced obesity also increased liver triglycerides content and physical training and metformin administration recovered these parameters. It was concluded that in MSG obese rats, physical exercise and metformin induced important metabolic alterations associated with an improvement in glucose homeostasis and in liver fat content. Obesity and Metabolism 2009; 5: 129-133.
Resumo:
The present study investigated the effects of moderate physical training on some of the parameters in the GH-IGF axis in experimental diabetic rats. Male Wistar rats were allocated into the following groups: sedentary control, trained control, sedentary diabetic, trained diabetic. Diabetes was induced by alloxan (32 mg/kg, b.w. iv). The physical training protocol consisted of 1 h swimming session/day, 5 days/week for 8 weeks supporting a load corresponding to 90% of maximal lactate steady state. After the experimental period, blood was collected to measure serum glucose, insulin, triglycerides, albumin, insulin-like growth factors-I (IGF-I), and growth hormone (GH). Pituitary gland was removed for GH quantification. Diabetes increased blood glucose and triglycerides and decreased insulin, IGF-I, serum and pituitary GH. Physical training decreased glucose and triglycerides, and also counteracted the reduction of serum IGF-I in diabetic rats. In conclusion, physical training recovered serum IGF-I showing no alteration of serum or pituitary GH levels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We compared the fish assemblage structure from streams with different intensities of physical habitat degradation and chemical water pollution by domestic sewage in southeastern Brazil. Eight streams (R1-R8) showing less disturbed or more disturbed conditions of chemical water quality and of physical habitat quality were selected. Cumulative abundance and biomass, combined in ABC plots, revealed (i) biomass curves above the abundance curves, represented by the streams R1-R2 (water and habitat less disturbed) and R5-R6 (water more disturbed and habitat less disturbed), and (ii) biomass curves below the abundance curves, represented by the streams R3-R4 (water less disturbed and habitat more disturbed) and R7-R8 (water and habitat more disturbed). The quantitative structure of the ichthyofauna showed significant correspondence with physical habitat condition but not with chemical water quality. The most significant species to cause the dissimilarity between less disturbed and more disturbed physical habitats was the exotic Poecilia reticulata. Such results indicate that in the focused region-with little influence of industrial pollution, noncritical domestic sewage discharge, and soil predominantly used for pasture-streams with high physical habitat integrity possess a differently structured ichthyofauna than streams with relatively low physical habitat integrity, reinforcing the importance of the physical habitat quality and riparian conservation along these water courses, warranting the conservation of these systems. Indeed, our results also reinforce the importance of including biotic descriptors, particularly of the ichthyo-fauna, in water-monitoring programs designed to reveal signs of human interference.
Resumo:
Ionizing radiation can change the molecular structure and affect the biological properties of biomolecules. This has been employed to attenuate animal toxins. Crotamine is a strongly basic polypeptide (pI 10.3) from Crotalus durissus terrificus venom composed of 42 amino acid residues. It induces skeletal muscle spasms leading to a spastic paralysis of hind limbs in mice. The objective of the present study was to carry out a biochemical study and a toxic activity assay on native and irradiated crotamine. Crotamine was purified from C.d. terrificus venom by Sephadex G-100 gel filtration followed by ion-exchange chromatography, and irradiated at 2 mg/ml in 0.15 M NaCl with 2.0 kGy gamma radiation emitted by a 60Co source. The native and irradiated toxins were evaluated in terms of structure and toxic activity (LD50). Irradiation did not change the protein concentration, the electrophoretic profile or the primary structure of the protein although differences were shown by spectroscopic techniques. Gamma radiation reduced crotamine toxicity by 48.3%, but did not eliminate it.