974 resultados para Outputless Finite State Automaton


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paramedics are at high risk of exposure to infectious diseases because they frequently undertake procedures such as the use and disposal of sharps as components of everyday practice. While the literature demonstrates that the management of sharps is problematic across all health disciplines, there is a paucity of research examining sharps management practices in the Australian pre-hospital paramedic context. This study examines knowledge and practices of sharps control among paramedics in Queensland, Australia. A mail survey focusing on infection control knowledge and practices was sent to all clinical personnel of the Queensland Ambulance Service (QAS) (N = 2274). A total of 1258 surveys were returned, a response rate of 55.3%. Participants responded to 12 true/false statements on the management of sharps and three questions about recapping practices. Most respondents were knowledgeable about the correct management of sharps, with a mean of 11.28 (out of 12, SD = 1.32). When gauging reported practices, more than half (59.1%, n = 736) of participants reported recapping a needle, and 38.5% (n = 479) reported never having done so. These results reflect good knowledge of general management of sharps among respondents, but suggest deficits regarding reported practices. The results suggest that a comprehensive ambulance in-service education programme focusing particularly on sharps management is required. The study highlights the need for further research on sharps management practices in the field, identification of barriers to safe sharps practices in pre-hospital settings, and 'best practice' for translating good sharps management knowledge into practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Off-site manufacture (OSM) offers numerous benefits to all parties in the construction process. The uptake of OSM in Australia has, however, been limited. This limited uptake corresponds to similar trends in the UK and US, although the level of OSM there appears to be increasing. This project undertook three workshops — one each in Victoria, Queensland and Western Australia — and 18 interviews with key stakeholders to assist in identifying the general benefits and barriers to OSM uptake in the Australian construction industry. Seven case studies were also undertaken, involving construction projects that used OSM, ranging from civil projects through to residential. Each of these case studies has been analysed to identify what worked and what didn’t, and suggest the lessons to be learned from each project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many industrialised nations have changing demographic profiles, as increased longevity and decreased birth rates lead to an ageing population. This presents significant challenges for workforces, as older employees retire and there are insufficient numbers of younger employees to take their place. This leads to skills shortages, and strong competition for those who are available. This paper considers these issues in the context of Queensland, the third largest state of Australia. The Queensland Government is addressing the issues for all industries in the state, primarily through a Skills Plan and an Experience Pays Awareness Strategy. As the largest employer in the state, the Queensland Government has commenced implementing the Experience Pays Awareness Strategy within its own workforce. The approach touches on many facets of HRM. The HRM policy framework and tools are examined for their potential to support increased participation of older employees. A range of issues are addressed for older workers, including their competence and health and safety issues. Issues for managers include addressing myths and subtle discrimination against older workers, as well as managing cross-generational workforce. Other strategies and methods are targeted at cultural factors, such as the expectations of older workers, and the myths and discrimination against older workers. Yet other strategies are aimed at organisational issues such retention of knowledge and succession planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new prognosis model based on the technique for health state estimation of machines for accurate assessment of the remnant life. For the evaluation of health stages of machines, the Support Vector Machine (SVM) classifier was employed to obtain the probability of each health state. Two case studies involving bearing failures were used to validate the proposed model. Simulated bearing failure data and experimental data from an accelerated bearing test rig were used to train and test the model. The result obtained is very encouraging and shows that the proposed prognostic model produces promising results and has the potential to be used as an estimation tool for machine remnant life prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 3000 cases of child sexual abuse are identified every year in Australia, but the real incidence is higher still. As a strategy to identify child sexual abuse, Australian States and Territories have enacted legislation requiring members of selected professions, including teachers, to report suspected cases. In addition, policy-based reporting obligations have been developed by professions, including the teaching profession. These legislative and industry-based developments have occurred in a context of growing awareness of the incidence and consequences of child sexual abuse. Teachers have frequent contact and close relationships with children, and possess expertise in monitoring changes in children’s behaviour. Accordingly, teachers are seen as being well-placed to detect and report suspected child sexual abuse. To date, however, there has been little empirical research into the operation of these reporting duties. The extent of teachers’ awareness of their duties to report child sexual abuse is unknown. Further, there is little evidence about teachers’ past reporting practice. Teachers’ duties to report sexual abuse, especially those in legislation, differ between States, and it is not known whether or how these differences affect reporting practice. This article presents results from the first large-scale Australian survey of teachers in three States with different reporting laws: New South Wales, Queensland, and Western Australia. The results indicate levels of teacher knowledge of reporting duties, reveal evidence about past reporting practice, and provide insights into anticipated future reporting practice and legal compliance. The findings have implications for reform of legislation and policy, training of teachers about the reporting of child sexual abuse, and enhancement of child protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neXus2 research project has sought to investigate the library and information services (LIS) workforce in Australia, from the institutional or employer perspective. The study builds on the neXus1 study, which collected data from individuals in the LIS workforce in order to present a snapshot of the profession in 2006, highlighting the demographics, educational background and career details of library and information professionals in Australia. To counterbalance this individual perspective, library institutions were invited to participate in a survey to contribute further data as employers. This final report on the neXus2 project compares the findings from the different library sectors, ie academic libraries, TAFE libraries, the National and State libraries, public libraries, special libraries and school libraries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dealing with the ever-growing information overload in the Internet, Recommender Systems are widely used online to suggest potential customers item they may like or find useful. Collaborative Filtering is the most popular techniques for Recommender Systems which collects opinions from customers in the form of ratings on items, services or service providers. In addition to the customer rating about a service provider, there is also a good number of online customer feedback information available over the Internet as customer reviews, comments, newsgroups post, discussion forums or blogs which is collectively called user generated contents. This information can be used to generate the public reputation of the service providers’. To do this, data mining techniques, specially recently emerged opinion mining could be a useful tool. In this paper we present a state of the art review of Opinion Mining from online customer feedback. We critically evaluate the existing work and expose cutting edge area of interest in opinion mining. We also classify the approaches taken by different researchers into several categories and sub-categories. Each of those steps is analyzed with their strength and limitations in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction projects can involve a diverse range of stakeholders and the success of the project depends very much on fulfilling their needs and expectations. It is important, therefore, to identify and recognize project stakeholders and develop a rigorous stakeholder management process. However, limited research has investigated the impact of stakeholders on construction projects in developing countries. A stakeholder impact analysis (SIA), based on an approach developed by Olander (2007), was adopted to investigate the stakeholders' impact on state-owned civil engineering projects in Vietnam. This involved the analysis of a questionnaire survey of 57 project managers to determine the relative importance of different stakeholders. The results show the client to have the highest level of impact on the projects, followed by project managers and the senior management of state-owned engineering firms. The SIA also provides suggestions to project managers in developing and evaluating the stakeholder management process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deconvolution method that combines nanoindentation and finite element analysis was developed to determine elastic modulus of thin coating layer in a coating-substrate bilayer system. In this method, the nanoindentation experiments were conducted to obtain the modulus of both the bilayer system and the substrate. The finite element analysis was then applied to deconvolve the elastic modulus of the coating. The results demonstrated that the elastic modulus obtained using the developed method was in good agreement with that reported in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.