960 resultados para Optimization problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La survie des réseaux est un domaine d'étude technique très intéressant ainsi qu'une préoccupation critique dans la conception des réseaux. Compte tenu du fait que de plus en plus de données sont transportées à travers des réseaux de communication, une simple panne peut interrompre des millions d'utilisateurs et engendrer des millions de dollars de pertes de revenu. Les techniques de protection des réseaux consistent à fournir une capacité supplémentaire dans un réseau et à réacheminer les flux automatiquement autour de la panne en utilisant cette disponibilité de capacité. Cette thèse porte sur la conception de réseaux optiques intégrant des techniques de survie qui utilisent des schémas de protection basés sur les p-cycles. Plus précisément, les p-cycles de protection par chemin sont exploités dans le contexte de pannes sur les liens. Notre étude se concentre sur la mise en place de structures de protection par p-cycles, et ce, en supposant que les chemins d'opération pour l'ensemble des requêtes sont définis a priori. La majorité des travaux existants utilisent des heuristiques ou des méthodes de résolution ayant de la difficulté à résoudre des instances de grande taille. L'objectif de cette thèse est double. D'une part, nous proposons des modèles et des méthodes de résolution capables d'aborder des problèmes de plus grande taille que ceux déjà présentés dans la littérature. D'autre part, grâce aux nouveaux algorithmes, nous sommes en mesure de produire des solutions optimales ou quasi-optimales. Pour ce faire, nous nous appuyons sur la technique de génération de colonnes, celle-ci étant adéquate pour résoudre des problèmes de programmation linéaire de grande taille. Dans ce projet, la génération de colonnes est utilisée comme une façon intelligente d'énumérer implicitement des cycles prometteurs. Nous proposons d'abord des formulations pour le problème maître et le problème auxiliaire ainsi qu'un premier algorithme de génération de colonnes pour la conception de réseaux protegées par des p-cycles de la protection par chemin. L'algorithme obtient de meilleures solutions, dans un temps raisonnable, que celles obtenues par les méthodes existantes. Par la suite, une formulation plus compacte est proposée pour le problème auxiliaire. De plus, nous présentons une nouvelle méthode de décomposition hiérarchique qui apporte une grande amélioration de l'efficacité globale de l'algorithme. En ce qui concerne les solutions en nombres entiers, nous proposons deux méthodes heurisiques qui arrivent à trouver des bonnes solutions. Nous nous attardons aussi à une comparaison systématique entre les p-cycles et les schémas classiques de protection partagée. Nous effectuons donc une comparaison précise en utilisant des formulations unifiées et basées sur la génération de colonnes pour obtenir des résultats de bonne qualité. Par la suite, nous évaluons empiriquement les versions orientée et non-orientée des p-cycles pour la protection par lien ainsi que pour la protection par chemin, dans des scénarios de trafic asymétrique. Nous montrons quel est le coût de protection additionnel engendré lorsque des systèmes bidirectionnels sont employés dans de tels scénarios. Finalement, nous étudions une formulation de génération de colonnes pour la conception de réseaux avec des p-cycles en présence d'exigences de disponibilité et nous obtenons des premières bornes inférieures pour ce problème.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le Problème de Tournées de Véhicules (PTV) est une clé importante pour gérér efficacement des systèmes logistiques, ce qui peut entraîner une amélioration du niveau de satisfaction de la clientèle. Ceci est fait en servant plus de clients dans un temps plus court. En terme général, il implique la planification des tournées d'une flotte de véhicules de capacité donnée basée à un ou plusieurs dépôts. Le but est de livrer ou collecter une certain quantité de marchandises à un ensemble des clients géographiquement dispersés, tout en respectant les contraintes de capacité des véhicules. Le PTV, comme classe de problèmes d'optimisation discrète et de grande complexité, a été étudié par de nombreux au cours des dernières décennies. Étant donné son importance pratique, des chercheurs dans les domaines de l'informatique, de la recherche opérationnelle et du génie industrielle ont mis au point des algorithmes très efficaces, de nature exacte ou heuristique, pour faire face aux différents types du PTV. Toutefois, les approches proposées pour le PTV ont souvent été accusées d'être trop concentrées sur des versions simplistes des problèmes de tournées de véhicules rencontrés dans des applications réelles. Par conséquent, les chercheurs sont récemment tournés vers des variantes du PTV qui auparavant étaient considérées trop difficiles à résoudre. Ces variantes incluent les attributs et les contraintes complexes observés dans les cas réels et fournissent des solutions qui sont exécutables dans la pratique. Ces extensions du PTV s'appellent Problème de Tournées de Véhicules Multi-Attributs (PTVMA). Le but principal de cette thèse est d'étudier les différents aspects pratiques de trois types de problèmes de tournées de véhicules multi-attributs qui seront modélisés dans celle-ci. En plus, puisque pour le PTV, comme pour la plupart des problèmes NP-complets, il est difficile de résoudre des instances de grande taille de façon optimale et dans un temps d'exécution raisonnable, nous nous tournons vers des méthodes approcheés à base d’heuristiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variational data assimilation is commonly used in environmental forecasting to estimate the current state of the system from a model forecast and observational data. The assimilation problem can be written simply in the form of a nonlinear least squares optimization problem. However the practical solution of the problem in large systems requires many careful choices to be made in the implementation. In this article we present the theory of variational data assimilation and then discuss in detail how it is implemented in practice. Current solutions and open questions are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.