918 resultados para Opportunistic Infections
Resumo:
Objectives: This article examines the views of nursing staff and administrators in long-term care facilities (LTCFs) regarding a clinical pathway for managing urinary tract infections (UTIs) in LTCF residents. Design: A qualitative (case study) design was used. Setting: Data were collected from 8 LTCFs in southern Ontario and 2 in Iowa enrolled in a larger randomized controlled trial of clinical pathway for managing UTIs in LTCF residents, conducted between September 2001 and March 2003. The clinical pathway, designed to more effectively identify, diagnose, and treat UTIs, and reduce inappropriate antibiotics use for asymptomatic UTIs, introduced 2 decision tools to determine when to order a urine culture and initiate antibiotic treatment for suspected UTIs. Participants: We conducted 19 individual interviews with administrators and 10 focus groups with 52 nurses. Findings: Nurses generally thought that the pathways were well developed and easy to use, and administrators believed they were an important educational resource. Barriers to their use varied by group-initial lack of buy-in from nurses (medical directors), additional work (directors of nursing), and the need to change the protocol to exclude certain residents based on prior health conditions and/or pressure from physicians or families (nurses). Conclusions: Both administrators and staff, once familiar with a new clinical protocol to improve UTI management in LTCFs, generally supported its use. © 2007 American Medical Directors Association.
Resumo:
Cronobacter (formerly known as Enterobacter sakazakii) is a genus comprising seven species regarded as opportunistic pathogens that can be found in a wide variety of environments and foods, including powdered infant formula (PIF). Cronobacter sakazakii, the major species of this genus, has been epidemiologically linked to cases of bacteremia, meningitis in neonates, and necrotizing enterocolitis, and contaminated PIF has been identified as an important source of infection. Robust and reproducible subtyping methods are required to aid in the detection and investigation, of foodborne outbreaks. In this study, a pulsed-field gel electrophoresis (PFGE) protocol was developed and validated for subtyping Cronobacter species. It was derived from an existing modified PulseNet protocol, wherein XbaI and SpeI were the primary and secondary restriction enzymes used, generating an average of 14.7 and 20.3 bands, respectively. The PFGE method developed was both reproducible and discriminatory for subtyping Cronobacter species.
Resumo:
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST) that correctly predicted the phylogroup (IA, IA, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated 'virulence' factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages. © 2013 McDowell et al.
Resumo:
Introduction: Antigenic stimulation is a proposed aetiologic mechanism for many haematological malignancies. Limited evidence suggests that community-acquired infections may increase the risk of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). However, associations with other myeloid malignancies including chronic myeloid leukaemia (CML) and myeloproliferative neoplasms (MPNs) are unknown.
Materials and methods: Using the Surveillance, Epidemiology and End Result (SEER)-Medicare database, fourteen community-acquired infections were compared between myeloid malignancy patients [AML (n=8489), CML (n=3626) diagnosed 1992-2005; MDS (n=3072) and MPNs (n=2001) diagnosed 2001-2005; and controls (200,000 for AML/CML and 97,681 for MDS/MPN]. Odds ratios (ORs) and 95% confidence intervals were adjusted for gender, age and year of selection excluding infections diagnosed in the 13-month period prior to selection to reduce reverse causality.
Results: Risk of AML and MDS respectively, were significantly associated with respiratory tract infections, bronchitis (ORs 1.20 [95% CI: 1.14-1.26], 1.25 [95% CI: 1.16-1.36]), influenza (ORs 1.16 [95% CI: 1.07-1.25], 1.29 [95% CI: 1.16-1.44]), pharyngitis (ORs 1.13 [95% CI: 1.06-1.21], 1.22 [95% CI: 1.11-1.35]), pneumonia (ORs 1.28 [95% CI: 1.21-1.36], 1.52 [95% CI: 1.40-1.66]), sinusitis (ORs 1.23 [95% CI: 1.16-1.30], 1.25 [95% CI: 1.15-1.36]) as was cystitis (ORs 1.13 [95% CI: 1.07-1.18], 1.26 [95% CI: 1.17-1.36]). Cellulitis (OR 1.51 [95% CI: 1.39-1.64]), herpes zoster (OR 1.31 [95% CI: 1.14-1.50]) and gastroenteritis (OR 1.38 [95% CI: 1.17-1.64]) were more common in MDS patients than controls. For CML, associations were limited to bronchitis (OR 1.21 [95% CI: 1.12-1.31]), pneumonia (OR 1.49 [95% CI: 1.37-1.62]), sinusitis (OR 1.19 [95% CI: 1.09-1.29]) and cellulitis (OR 1.43 [95% CI: 1.32-1.55]) following Bonferroni correction. Only cellulitis (OR 1.34 [95% CI: 1.21-1.49]) remained significant in MPN patients. Many infections remained elevated when more than 6 years of preceding claims data were excluded.
Discussion: Common community-acquired infections may be important in the malignant transformation of the myeloid lineage. Differences in the aetiology of classic MPNs and other myeloid malignancies require further exploration.
Resumo:
We examine the impact of primary and secondary interference on opportunistic relaying in cognitive spectrum sharing networks. In particular, new closed-form exact and asymptotic expressions for the outage probability of cognitive opportunistic relaying are derived over Rayleigh and Nakagami-m fading channels. Our analysis presents revealing insights into the diversity and array gains, diversity-multiplexing tradeoff, impact of primary transceivers' positions, and the optimal position of relays. We highlight that cognitive opportunistic relaying achieves the full diversity gain which is a product of the number of relays and the minimum Nakagami-m fading parameter in the secondary network. Furthermore, we confirm that the diversity gain reduces to zero when the peak interference constraint in the secondary network is proportional to the interference power from the primary network.
Resumo:
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
Resumo:
Bacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼31 and ∼34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼31 kDa and the ∼34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein. © 2014 Galvão et al.
Resumo:
Propionibacterium acnes and coagulase-negative staphylococci (CoNS) are opportunistic pathogens implicated in prosthetic joint and fracture fixation device-related infections. The purpose of this study was to determine whether P. acnes and the CoNS species Staphylococcus lugdunensis, isolated from an "aseptically failed" prosthetic hip joint and a united intramedullary nail-fixed tibial fracture, respectively, could cause osteomyelitis in an established implant-related osteomyelitis model in rabbits in the absence of wear debris from the implant material. The histological features of P. acnes infection in the in vivo rabbit model were consistent with localized pyogenic osteomyelitis, and a biofilm was present on all explanted intramedullary (IM) nails. The animals displayed no outward signs of infection, such as swelling, lameness, weight loss, or elevated white blood cell count. In contrast, infection with S. lugdunensis resulted in histological features consistent with both pyogenic osteomyelitis and septic arthritis, and all S. lugdunensis-infected animals displayed weight loss and an elevated white blood cell count despite biofilm detection in only two out of six rabbits. The differences in the histological and bacteriological profiles of the two species in this rabbit model of infection are reflective of their different clinical presentations: low-grade infection in the case of P. acnes and acute infection for S. lugdunensis. These results are especially important in light of the growing recognition of chronic P. acnes biofilm infections in prosthetic joint failure and nonunion of fracture fixations, which may be currently reported as "aseptic" failure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Resumo:
Background: Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway ATP levels. Furthermore, evidence is growing to suggest that infective agents can cause the release of extracellular vesicle (EVs) in vitro and in bodily fluids. ATP can evoke the P2X7/caspase 1 dependent release of IL-1β/IL-18 from EVs; these cytokines are associated with neutrophilia and are increased during exacerbations. Thus we hypothesized that respiratory infections causes the release of EVs in the airway and that the raised ATP levels, present in respiratory disease, triggers the release of IL-1β/IL-18, neutrophilia and subsequent disease exacerbations.
Methods: To begin to test this hypothesis we utilised human cell-based assays, ex vivo murine BALF, in vivo pre-clinical models and human samples to test this hypothesis.
Results: Data showed that in a murine model of COPD, known to have increased airway ATP levels, infective challenge causes exacerbated inflammation. Using cell-based systems, murine models and samples collected from challenged healthy subjects, we showed that infection can trigger the release of EVs. When exposed to ATP the EVs release IL-1b/IL-18 via a P2X7/caspase-dependent mechanism. Furthermore ATP challenge can cause a P2X7 dependent increase in LPS-driven neutrophilia.
Conclusions: This preliminary data suggests a possible mechanism for how infections could exacerbate respiratory diseases and may highlight a possible signalling pathway for drug discovery efforts in this area.
Resumo:
The role of bacteria and viruses as aetiological agents in the pathogenesis of cancer has been well established for several sites, including a number of haematological malignancies. Less clear is the impact of such exposures on the subsequent development of multiple myeloma (MM). Using the population-based U.S. Surveillance Epidemiology and End Results-Medicare dataset, 15,318 elderly MM and 200,000 controls were identified to investigate the impact of 14 common community-acquired infections and risk of MM. Odds ratios (ORs) and associated 95% confidence intervals (CIs) were adjusted for sex, age and calendar year of selection. The 13-month period prior to diagnosis/selection was excluded. Risk of MM was increased by 5-39% following Medicare claims for eight of the investigated infections. Positive associations were observed for several infections including bronchitis (adjusted OR 1.14, 95% CI 1.09-1.18), sinusitis (OR 1.15, 95% CI 1.10-1.20) pneumonia (OR 1.27, 95% CI 1.21-1.33), herpes zoster (OR 1.39, 95% CI 1.29-1.49) and cystitis (OR 1.09, 95% CI 1.05-1.14). Each of these infections remained significantly elevated following the exclusion of more than 6 years of claims data. Exposure to infectious antigens may therefore play a role in the development of MM. Alternatively, the observed associations may be a manifestation of an underlying immune disturbance present several years prior to MM diagnosis and thereby part of the natural history of disease progression.
Resumo:
Emerging evidence supports the role of immune stimulation in the development of lymphoplasmacytic lymphoma/Waldenström Macroglobulinaemia (LPL/WM). Using the population-based Surveillance, Epidemiology End Results-Medicare database we investigated the exposure to 14 common community-acquired infections and subsequent risk of LPL/WM in 693 LPL/WM cases and 200 000 controls. Respiratory tract infections, bronchitis [odds ratio (OR) 1·56], pharyngitis (OR 1·43), pneumonia (OR 1·42) and sinusitis (OR 1·33) and skin infection, herpes zoster (OR 1·51) were all significantly associated with subsequent increased risk of LPL/WM. For each of these infections, the findings remained significantly elevated following the exclusion of more than 6 years of Medicare claims data prior to LPL/WM diagnosis. Our findings may support a role for infections in the development of LPL/WM or could reflect an underlying immune disturbance that is present several years prior to diagnosis and thereby part of the natural history of disease progression.
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen threatening patients with cystic fibrosis. Flagella are required for biofilm formation, as well as adhesion to and invasion of epithelial cells. Recognition of flagellin via the Toll-like receptor 5 (TLR5) contributes to exacerbate B. cenocepacia-induced lung epithelial inflammatory responses. In this study, we report that B. cenocepacia flagellin is glycosylated on at least 10 different sites with a single sugar, 4,6-dideoxy-4-(3-hydroxybutanoylamino)-d-glucose. We have identified key genes that are required for flagellin glycosylation, including a predicted glycosyltransferase gene that is linked to the flagellin biosynthesis cluster and a putative acetyltransferase gene located within the O-antigen lipopolysaccharide cluster. Another O-antigen cluster gene, rmlB, which is required for flagellin glycan and O-antigen biosynthesis, was essential for bacterial viability, uncovering a novel target against Burkholderia infections. Using glycosylated and nonglycosylated purified flagellin and a cell reporter system to assess TLR5-mediated responses, we also show that the presence of glycan in flagellin significantly impairs the inflammatory response of epithelial cells. We therefore suggest that flagellin glycosylation reduces recognition of flagellin by host TLR5, providing an evasive strategy to infecting bacteria.
Resumo:
We consider a collision-sensitive secondary system that intends to opportunistically aggregate and utilize spectrum of a primary system to achieve higher data rates. In such opportunistic spectrum access, secondary transmission can collide with primary transmission. When the secondary system aggregates more channels for data transmission, more frequent collisions may occur, limiting the performance obtained by the opportunistic spectrum aggregation. In this context, dynamic spectrum aggregation problem is formulated to maximize the ergodic channel capacity under the constraint of collision tolerable level. To solve the problem, we develop the optimal spectrum aggregation approach, deriving closed-form expressions for the collision probability in terms of primary user traffic load, secondary user transmission interval, and the random number of sub-channels aggregated. Our results show that aggregating only a subset of sub-channels will be a better choice, depending on the ratio of collision sensitivity requirement to the primary user traffic.