953 resultados para Open Reading Frame


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The condition termed 46,XY complete gonadal dysgenesis is characterized by a completely female phenotype and streak gonads. In contrast, subjects with 46,XY partial gonadal dysgenesis and those with embryonic testicular regression sequence usually present ambiguous genitalia and a mix of Müllerian and Wolffian structures. In 46,XY partial gonadal dysgenesis gonadal histology shows evidence of incomplete testis determination. In 46,XY embryonic testicular regression sequence there is lack of gonadal tissue on both sides. Various lines of evidence suggest that embryonic testicular regression sequence is a variant form of 46,XY gonadal dysgenesis. The sex-determining region Y chromosome gene (SRY) encodes sequences for the testis-determining factor. To date germ-line mutations in SRY have been reported in approximately 20% of subjects with 46,XY complete gonadal dysgenesis. However, no germ-line mutations of SRY have been reported in subjects with the partial forms. We studied 20 subjects who presented either 46,XY partial gonadal dysgenesis or 46,XY embryonic testicular regression sequence. We examined the SRY gene and the minimum region of Y-specific DNA known to confer a male phenotype. The SRY-open reading frame (ORF) was normal in all subjects. However a de novo interstitial deletion 3' to the SRY-ORF was found in one subject. Although it is possible that the deletion was unrelated to the subject's phenotype, we propose that the deletion was responsible for the abnormal gonadal development by diminishing expression of SRY. We suggest that the deletion resulted either in the loss of sequences necessary for normal SRY expression or in a position effect that altered SRY expression. This case provides further evidence that deletions of the Y chromosome outside the SRY-ORF can result in either complete or incomplete sex reversal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microglial cells, the resident macrophages of the brain, play an important role in the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1), and recent studies suggest that opioid peptides regulate the function of macrophages from somatic tissues. We report herein the presence of kappa opioid receptors (KORs) in human fetal microglia and inhibition of HIV-1 expression in acutely infected microglial cell cultures treated with KOR ligands. Using reverse transcriptase-polymerase chain reaction and sequencing analyses, we found that mRNA for the KOR was constitutively expressed in microglia and determined that the nucleotide sequence of the open reading frame was identical to that of the human brain KOR gene. The expression of KOR in microglial cells was confirmed by membrane binding of [3H]U69,593, a kappa-selective ligand, and by indirect immunofluorescence. Treatment of microglial cell cultures with U50,488 or U69,593 resulted in a dose-dependent inhibition of expression of the monocytotropic HIV-1 SF162 strain. This antiviral effect of the kappa ligands was blocked by the specific KOR antagonist, nor-binaltrophimine. These findings suggest that kappa opioid agonists have immunomodulatory activity in the brain, and that these compounds could have potential in the treatment of HIV-1-associated encephalopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we reported on the discovery and characterization of a mammalian chromatin-associated protein, CHD1 (chromo-ATPase/helicase-DNA-binding domain), with features that led us to suspect that it might have an important role in the modification of chromatin structure. We now report on the characterization of the Drosophila melanogaster CHD1 homologue (dCHD1) and its localization on polytene chromosomes. A set of overlapping cDNAs encodes an 1883-aa open reading frame that is 50% identical and 68% similar to the mouse CHD1 sequence, including conservation of the three signature domains for which the protein was named. When the chromo and ATPase/helicase domain sequences in various CHD1 homologues were compared with the corresponding sequences in other proteins, certain distinctive features of the CHD1 chromo and ATPase/helicase domains were revealed. The dCHD1 gene was mapped to position 23C-24A on chromosome 2L. Western blot analyses with antibodies raised against a dCHD1 fusion protein specifically recognized an approximately 210-kDa protein in nuclear extracts from Drosophila embryos and cultured cells. Most interestingly, these antibodies revealed that dCHD1 localizes to sites of extended chromatin (interbands) and regions associated with high transcriptional activity (puffs) on polytene chromosomes from salivary glands of third instar larvae. These observations strongly support the idea that CHD1 functions to alter chromatin structure in a way that facilitates gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reverse genetics approach was applied to generate a chimeric nonsegmented negative strand RNA virus, rabies virus (RV) of the Rhabdoviridae family, that expresses a foreign protein. DNA constructs containing the entire open reading frame of the bacterial chloramphenicol acetyltransferase (CAT) gene and an upstream RV cistron border sequence were inserted either into the nontranslated pseudogene region of a full-length cDNA copy of the RV genome or exchanged with the pseudogene region. After intracellular T7 RNA polymerase-driven expression of full-length antigenome RNA transcripts and RV nucleoprotein, phosphoprotein and polymerase from transfected plasmids, RVs transcribing novel monocistronic mRNAs and expressing CAT at high levels, were recovered. The chimeric viruses possessed the growth characteristics of standard RV and were genetically stable upon serial cell culture passages. CAT activity was still observed in cell cultures infected with viruses passaged for more than 25 times. Based on the unprecedented stability of the chimeric RNA genomes, which is most likely due to the structure of the rhabdoviral ribonucleoprotein complex, we predict the successful future use of recombinant rhabdovirus vectors for displaying foreign antigens or delivering therapeutic genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha1-->2-linked N-acetylglucosamine. The biosynthesis of these chains probably occurs in the lumen of the Golgi apparatus, by analogy to S. cerevisiae. The sugar donors, GDP-mannose and UDP-GlcNAc, must first be transported from the cytosol, their site of synthesis, via specific Golgi membrane transporters into the lumen where they are substrates in the biosynthesis of these mannoproteins. A mutant of K. lactis, mnn2-2, that lacks terminal N-acetylglucosamine in its mannan chains in vivo, has recently been characterized and shown to have a specific defect in transport of UDP-GlcNAc into the lumen of Golgi vesicles in vitro. We have now cloned the gene encoding the K. lactis Golgi membrane UDP-GlcNAc transporter by complementation of the mnn2-2 mutation. The mnn2-2 mutant was transformed with a genomic library from wild-type K. lactis in a pKD1-derived vector; transformants were isolated and phenotypic correction was monitored following cell surface labeling with fluorescein isothiocyanate conjugated to Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescent activated cell sorter. A 2.4-kb DNA fragment was found to restore the wild-type lectin binding phenotype. Upon loss of the plasmid containing this fragment, reversion to the mutant phenotype occurred. The above fragment contained an open reading frame for a multitransmembrane spanning protein of 328 amino acids. The protein contains a leucine zipper motif and has high homology to predicted proteins from S. cerevisiae and C. elegans. In an assay in vitro, Golgi vesicles isolated from the transformant had regained their ability to transport UDP-GlcNAc. Taken together, the above results strongly suggest that the cloned gene encodes the Golgi UDP-GlcNAc transporter of K. lactis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel human cDNA encoding a cytosolic 62-kDa protein (p62) that binds to the Src homology 2 (SH2) domain of p56lck in a phosphotyrosine-independent manner has been cloned. The cDNA is composed of 2074 nucleotides with an open reading frame encoding 440 amino acids. Northern analysis suggests that p62 is expressed ubiquitously in all tissues examined. p62 is not homologous to any known protein in the data base. However, it contains a cysteine-rich region resembling a zinc finger motif, a potential G-protein-binding region, a PEST motif, and several potential phosphorylation sites. Using T7-epitope tagged p62 expression in HeLa cells, the expressed protein was shown to bind to the lck SH2 domain. Deletion of the N-terminal 50 amino acids abolished binding, but mutagenesis of the single tyrosine residue in this region had no effect on binding. Thus, the cloned cDNA indeed encodes the p62 protein, which is a phosphotyrosine-independent ligand for the lck SH2 domain. Its binding mechanism is unique with respect to binding modes of other known ligands for SH2 domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eukaryotic convertase family plays an important role in posttranslational proteolytic processing and activation of many pro- and polypeptides that have at their cleavage sites the paired basic motif, RX(K/R)R. Recent studies have revealed that the cleavage site of insect pro-vitellogenins (pro-Vg) also contains this motif. To identify and characterize the insect pro-Vg processing enzyme, Vg convertase (VC), its cDNA was cloned from a vitellogenic female fat body cDNA library of the mosquito, Aedes aegypti. The 3735-bp-long VC cDNA has an open reading frame encoding a 115-kDa protein. In vitro transcription/translation of VC cDNA revealed that this 115-kDa protein becomes 140 kDa after co- and posttranslational modifications. The VC deduced amino acid sequence has high similarity to and a domain structure characteristic of furin-like convertases. Northern blot analysis showed that a single 4.2-kb transcript was expressed in the fat body during the first 18 hr of the Vg synthetic period. Coexpression of VC cDNA with mosquito Vg cDNA resulted in correct cleavage of pro-Vg. Thus, this newly identified convertase is, indeed, a functional fat body-specific enzyme for pro-Vg cleavage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spontaneous mutator strain of Escherichia coli (fpg mutY) was used to clone the OGG1 gene of Saccharomyces cerevisiae, which encodes a DNA glycosylase activity that excises 7,8-dihydro-8-oxoguanine (8-OxoG). E. coli (fpg mutY) was transformed by a yeast DNA library, and clones that showed a reduced spontaneous mutagenesis were selected. The antimutator activity was associated with pYSB10, an 11-kbp recombinant plasmid. Cell-free extracts of E. coli (fpg mutY) harboring pYSB10 possess an enzymatic activity that cleaves a 34-mer oligonucleotide containing a single 8-oxoG opposite a cytosine (8-OxoG/C). The yeast DNA fragment of 1.7 kbp that suppresses spontaneous mutagenesis and overproduces the 8-OxoG/C cleavage activity was sequenced and mapped to chromosome XIII. DNA sequencing identified an open reading frame, designated OGG1, which encodes a protein of 376 amino acids with a molecular mass of 43 kDa. The OGG1 gene was inserted in plasmid pUC19, yielding pYSB110. E. coli (fpg) harboring pYSB110 was used to purify the Ogg1 protein of S. cerevisiae to apparent homogeneity. The Ogg1 protein possesses a DNA glycosylase activity that releases 8-OxoG and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. The Ogg1 protein preferentially incises DNA that contains 8-OxoG opposite cytosine (8-OxoG/C) or thymine (8-OxoG/T). In contrast, Ogg1 protein does not incise the duplex where an adenine is placed opposite 8-OxoG (8-OxoG/A). The mechanism of strand cleavage by Ogg1 protein is probably due to the excision of 8-OxoG followed by a beta-elimination at the resulting apurinic/apyrimidinic site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coding sequence of rat MEK kinase 1 (MEKK1) has been determined from multiple, independent cDNA clones. The cDNA is full-length based on the presence of stop codons in all three reading frames of the 5' untranslated region. Probes from the 5' and the 3' coding sequences both hybridize to a 7-kb mRNA. The open reading frame is 4.5 kb and predicts a protein with molecular mass of 161,225 Da, which is twice the size of the previously published MEKK1 sequence and reveals 801 amino acids of novel coding sequence. The novel sequence contains two putative pH domains, two proline-rich regions, and a cysteine-rich region. Antisera to peptides derived from this new sequence recognize an endogenous protein in human and rodent cells of 195 kDa, consistent with the size of the expressed rat MEKK1 clone. Endogenous and recombinant rat MEKK1 are enriched in membranes; little of either is found in soluble fractions. Expression of recombinant rat MEKK1 leads to activation of three mitogen-activated protein kinase modules in the order c-Jun N-terminal kinase/stress-activated protein kinase > p38 mitogen-activated protein kinase = extracellular signal-regulated kinase 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pentapeptide open reading frame equipped with a canonical ribosome-binding site is present in the Escherichia coli 23S rRNA. Overexpression of 23S rRNA fragments containing the mini-gene renders cells resistant to the ribosome-inhibiting antibiotic erythromycin. Mutations that change either the initiator or stop codons of the peptide mini-gene result in the loss of erythromycin resistance. Nonsense mutations in the mini-gene also abolish erythromycin resistance, which can be restored in the presence of the suppressor tRNA, thus proving that expression of the rRNA-encoded peptide is essential for the resistance phenotype. The ribosome appears to be the likely target of action of the rRNA-encoded pentapeptide, because in vitro translation of the peptide mini-gene decreases the inhibitory action of erythromycin on cell-free protein synthesis. Thus, the new mechanism of drug resistance reveals that in addition to the structural and functional role of rRNA in the ribosome, it may also have a peptide-coding function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have isolated a cDNA encoding human ceramide glucosyltransferase (glucosylceramide synthase, UDP-glucose:N-acylsphingosine D-glucosyltransferase, EC 2.4.1.80) by expression cloning using as a recipient GM-95 cells lacking the enzyme. The enzyme catalyzes the first glycosylation step of glycosphingolipid synthesis and the product, glucosylceramide, serves as the core of more than 300 glycosphingolipids. The cDNA has a G+C-rich 5' untranslated region of 290 nucleotides and the open reading frame encodes 394 amino acids (44.9 kDa). A hydrophobic segment was found near the N terminus that is the potential signal-anchor sequence. In addition, considerable hydrophobicity was detected in the regions close to the C terminus, which may interact with the membrane. A catalytically active enzyme was produced from Escherichia coli transfected with the cDNA. Northern blot analysis revealed a single transcript of 3.5 kb, and the mRNA was widely expressed in organs. The amino acid sequence of ceramide glucosyltransferase shows no significant homology to ceramide galactosyltransferase, which indicates different evolutionary origins of these enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have isolated mutants of Synechocystis PCC6803 that grew very slowly in a low-sodium medium, which is unfavorable for HCO3(-) transport, and examined two of these mutants (SC1 and SC2) for their ability to take up CO2 and HCO3(-) in the light. The CO2 transport activity of SC1 and SC2 was much lower than that of the wild type (WT), whereas there was no difference between the mutants and the WT in their activity of HCO3(-) transport. A clone containing a 3.9-kilobase-pair insert DNA that transforms both mutants to the WT phenotype was isolated from a genomic library of WT Synechocystis. Sequencing of the insert DNA in the region of mutations in SC1 and SC2 revealed an open reading frame (designated cotA), which showed significant amino-acid sequence homology to cemA encoding a protein found in the inner envelope membrane of chloroplasts. The cotA gene is present in a single copy and was not cotranscribed with any other gene(s). cotA encodes a protein of 247 amino acids containing four transmembrane domains. There was substitution of a single base in SC1 and two bases in SC2 in their cotA genes. A possible role of the cotA gene product in CO2 transport is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have cloned the gene for a putative chloroplast RNA polymerase sigma factor from the unicellular rhodophyte Cyanidium caldarium. This gene contains an open reading frame encoding a protein of 609 amino acids with domains highly homologous to all four conserved regions found in bacterial and cyanobacterial sigma 70-type subunits. When Southern blots of genomic DNA were hybridized to the "rpoD box" oligonucleotide probe, up to six hybridizing hands were observed. Transcripts of the sigma factor gene were undetectable in RNA from dark-grown cells but were abundant in the poly(A)+ fraction of RNA from illuminated cells. The sigma factor gene was expressed in Escherichia coli, and antibodies against the expressed sigma factor fusion protein cross-reacted with a 55-kDa protein in partially purified chloroplast RNA polymerase. Antibodies directed against a cyanobacterial RNA polymerase sigma factor also cross-reacted with a 55-kDa protein in the same enzyme preparation. Immunoprecipitation experiments showed that this enzyme preparation contains proteins with the same molecular weights as the alpha, beta, beta', and beta" subunits of chloroplast RNA polymerase in higher plants. This study identifies a gene for a plastid RNA polymerase sigma factor and indicates that there may be a family of nuclear-encoded sigma factors that recognize promoters in subsets of plastid genes and regulate differential gene expression at the transcriptional level.