439 resultados para Ontologies
Resumo:
Existing semantic search tools have been primarily designed to enhance the performance of traditional search technologies but with little support for ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by providing several means to hide the complexity of semantic search from end users and thus make it easy to use and effective.
Resumo:
This paper describes the work undertaken in the Scholarly Ontologies Project. The aim of the project has been to develop a computational approach to support scholarly sensemaking, through interpretation and argumentation, enabling researchers to make claims: to describe and debate their view of a document's key contributions and relationships to the literature. The project has investigated the technicalities and practicalities of capturing conceptual relations, within and between conventional documents in terms of abstract ontological structures. In this way, we have developed a new kind of index to distributed digital library systems. This paper reports a case study undertaken to test the sensemaking tools developed by the Scholarly Ontologies project. The tools used were ClaiMapper, which allows the user to sketch argument maps of individual papers and their connections, ClaiMaker, a server on which such models can be stored and saved, which provides interpretative services to assist the querying of argument maps across multiple papers and ClaimFinder, a novice interface to the search services in ClaiMaker.
Resumo:
We are interested in the annotation of knowledge which does not necessarily require a consensus. Scholarly debate is an example of such a category of knowledge where disagreement and contest are widespread and desirable, and unlike many Semantic Web approaches, we are interested in the capture and the compilation of these conflicting viewpoints and perspectives. The Scholarly Ontologies project provides the underlying formalism to represent this meta-knowledge, and we will look at ways to lighten the burden of its creation. After having described some particularities of this kind of knowledge, we introduce ClaimSpotter, our approach to support its ‘capture’, based on the elicitation of a number of recommendations which are presented for consideration to our annotators (or analysts), and give some elements of evaluation.
Resumo:
The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included.
Resumo:
Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. Results - Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/ webcite. Conclusion - We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning.
Resumo:
Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the Animal Behaviour domain. Our objective was to see how much could be done in a simple and rapid manner using a corpus of journal papers. We used a sequence of text processing steps, and describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a hierarchy. We were able in a very short space of time to construct a 17000 term ontology with a high percentage of suitable terms. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus.
Resumo:
The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included. © 2010 The authors.
Resumo:
The paper is a description of information and software content of a computer knowledge bank on medical diagnostics. The classes of its users and the tasks which they can solve are described. The information content of the bank contains three ontologies: an ontology of observations in the field of medical diagnostics, an ontology of knowledge base (diseases) in medical diagnostics and an ontology of case records, and also it contains three classes of information resources for every division of medicine – observation bases, knowledge bases, and data bases (with data about patients), that correspond to these ontologies. Software content consists of editors for information of different kinds (ontologies, bases of observations, knowledge and data), and also of a program which performs medical diagnostics.
Resumo:
Traditional content-based filtering methods usually utilize text extraction and classification techniques for building user profiles as well as for representations of contents, i.e. item profiles. These methods have some disadvantages e.g. mismatch between user profile terms and item profile terms, leading to low performance. Some of the disadvantages can be overcome by incorporating a common ontology which enables representing both the users' and the items' profiles with concepts taken from the same vocabulary. We propose a new content-based method for filtering and ranking the relevancy of items for users, which utilizes a hierarchical ontology. The method measures the similarity of the user's profile to the items' profiles, considering the existing of mutual concepts in the two profiles, as well as the existence of "related" concepts, according to their position in the ontology. The proposed filtering algorithm computes the similarity between the users' profiles and the items' profiles, and rank-orders the relevant items according to their relevancy to each user. The method is being implemented in ePaper, a personalized electronic newspaper project, utilizing a hierarchical ontology designed specifically for classification of News items. It can, however, be utilized in other domains and extended to other ontologies.
Resumo:
The article presents a new method to automatic generation of help in software. Help generation is realized in the framework of the tool for development and automatic generation of user interfaces based on ontologies. The principal features of the approach are: support for context-sensitive help, automatic generation of help using a task project and an expandable system of help generation.
Resumo:
The TM4L environment enables the development and use of ontology-aware courseware based on the Semantic Web technology Topic Maps. In this paper we discuss its features in the light of authoring support, giving illustrative examples to highlight its use.
Resumo:
This article describes the process of prototyping adaptive online learning using the authoring tool for developers, which is based on ontologies. The article also gives a brief overview of contemporary situation and describes modern trends of evolution e-learning courses and present standards in this area. It also describes architecture of system VITA II.
Resumo:
The paper presents experience in teaching of knowledge and ontological engineering. The teaching framework is targeted on the development of cognitive skills that will allow facilitating the process of knowledge elicitation, structuring and ontology development for scaffolding students’ research. The structuring procedure is the kernel of ontological engineering. The 5-steps ontology designing process is described. Special stress is put on “beautification” principles of ontology creating. The academic curriculum includes interactive game-format training of lateral thinking, interpersonal cognitive intellect and visual mind mapping techniques.
Resumo:
The paper presents an ongoing effort aimed at building an electronic archive of documents issued by the Bulgarian Ministry of Education in the 40ies and 50ies of the 20th century. These funds are stored in the Archive of the Ministry of the People’s Education within the State Archival Fund of the General Department of Archives at the Council of Ministers of Bulgaria. Our basic concern is not the digitization process per se, but the subsequent organization of the archive in a clear and easily-searchable way which would allow various types of users to get access to the documents of interest to them. Here we present the variety of the documents which are stored in the archival collection, and suggestions on their electronic organization. We suggest using ontologies- based presentation of the archive. The basic benefit of this approach is the possibility to search the collection according to the stored content categories.
Resumo:
The research is partially supported by Russian Foundation for Basic Research (grants 06-01-81005 and 07-01- 00053)