971 resultados para One-dimensional


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A two-dimensional mathematical model for evaluating the simultaneous heat and moisture migration in porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The numerical solution was based on the control volume finite difference technique with fully implicit scheme in time. Two validation experiments were developed in this study. The evolution of transient moisture distributions in both one-dimensional and two-dimensional cases was measured. A comparison between experimental results and those obtained by the numerical model proves that they are fully consistent with each other. The model can be easily integrated into a whole building heat, air and moisture transfer model. Another main advantage of the present numerical method lies in the fact that the required moisture transport properties are comparatively simple and easy to determine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A question central to modelling and, ultimately, managing food webs concerns the dimensionality of trophic niche space, that is, the number of independent traits relevant for determining consumer-resource links. Food-web topologies can often be interpreted by assuming resource traits to be specified by points along a line and each consumer's diet to be given by resources contained in an interval on this line. This phenomenon, called intervality, has been known for 30 years and is widely acknowledged to indicate that trophic niche space is close to one-dimensional. We show that the degrees of intervality observed in nature can be reproduced in arbitrary-dimensional trophic niche spaces, provided that the processes of evolutionary diversification and adaptation are taken into account. Contrary to expectations, intervality is least pronounced at intermediate dimensions and steadily improves towards lower- and higher-dimensional trophic niche spaces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tanpura string vibrations have been investigated previously using numerical models based on energy conserving schemes derived from a Hamiltonian description in one-dimensional form. Such time-domain models have the property that, for the lossless case, the numerical Hamiltonian (representing total energy of the system) can be proven to be constant from one time step
to the next, irrespective of any of the system parameters; in practice the Hamiltonian can be shown to be conserved within machine precision. Models of this kind can reproduce a jvari effect, which results from the bridge-string interaction. However the one-dimensional formulation has recently been shown to fail to replicate the jvaris strong dependence on the thread placement. As a first step towards simulations which accurately emulate this sensitivity to the thread placement, a twodimensional model is proposed, incorporating coupling of controllable level between the two string polarisations at the string termination opposite from the barrier. In addition, a friction force acting when the string slides across the bridge in horizontal direction is introduced, thus effecting a further damping mechanism. In this preliminary study, the string is terminated at the position of the thread. As in the one-dimensional model, an implicit scheme has to be used to solve the system, employing Newton's method to calculate the updated positions and momentums of each string segment. The two-dimensional model is proven to be energy conserving when the loss parameters are set to zero, irrespective of the coupling constant. Both frequency-dependent and independent losses are then added to the string, so that the model can be compared to analogous instruments. The influence of coupling and the bridge friction are investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Four-dimensional variational data assimilation (4D-Var) is used in environmental prediction to estimate the state of a system from measurements. When 4D-Var is applied in the context of high resolution nested models, problems may arise in the representation of spatial scales longer than the domain of the model. In this paper we study how well 4D-Var is able to estimate the whole range of spatial scales present in one-way nested models. Using a model of the one-dimensional advection–diffusion equation we show that small spatial scales that are observed can be captured by a 4D-Var assimilation, but that information in the larger scales may be degraded. We propose a modification to 4D-Var which allows a better representation of these larger scales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An open-framework indium selenide, [C7H10N][In9Se14], has been prepared under solvothermal conditions in the presence of 3,5-dimethylpyridine, and characterized by single crystal diffraction, thermogravimetry, elemental analysis, FTIR spectroscopy and UV-Vis diffuse reflectance. The crystal structure of [C7H10N][In9Se14] contains an unusual building unit, in which corner-linked and edge-linked InSe45- tetrahedra coexist. The presence of one-dimensional circular channels, of ca. 6 Å diameter, results in approximately 25% of solvent accessible void space.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyze the stability properties of equilibrium solutions and periodicity of orbits in a two-dimensional dynamical system whose orbits mimic the evolution of the price of an asset and the excess demand for that asset. The construction of the system is grounded upon a heterogeneous interacting agent model for a single risky asset market. An advantage of this construction procedure is that the resulting dynamical system becomes a macroscopic market model which mirrors the market quantities and qualities that would typically be taken into account solely at the microscopic level of modeling. The system`s parameters correspond to: (a) the proportion of speculators in a market; (b) the traders` speculative trend; (c) the degree of heterogeneity of idiosyncratic evaluations of the market agents with respect to the asset`s fundamental value; and (d) the strength of the feedback of the population excess demand on the asset price update increment. This correspondence allows us to employ our results in order to infer plausible causes for the emergence of price and demand fluctuations in a real asset market. The employment of dynamical systems for studying evolution of stochastic models of socio-economic phenomena is quite usual in the area of heterogeneous interacting agent models. However, in the vast majority of the cases present in the literature, these dynamical systems are one-dimensional. Our work is among the few in the area that construct and study analytically a two-dimensional dynamical system and apply it for explanation of socio-economic phenomena.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bloch and Wannier functions of the Kohn type for a quite general one-dimensional Hamiltonian with inversion symmetry are studied. Important clarifications on null minigaps and the symmetry of those functions are given, with emphasis on the Kronig-Penney model. The lack of a general selection rule on the miniband index for optical transitions between edge states in semiconductor superlattices is discussed. A direct method for the calculation of Wannier-Kohn functions is presented.