966 resultados para OXIDATIVE METABOLISM
Resumo:
Introduction: Obesity is a chronic disease that induces risk factors for metabolic syndrome and, is associated with disturbances in the metabolism of the zinc. Therefore, the aim of this study was to investigate the existence of relationship between the biomarkers of metabolic syndrome and the zinc nutricional status in obese women. Method: Seventy-three premenopausal women, aged between 20 and 50 years, were divided into two groups: case group, composed of obese (n = 37) and control group, composed of no obese (n = 36). The assessment of the body mass index and waist circumference were carried out using anthropometric measurements. The plasmatic and erythrocytary zinc were analyzed by method atomic absorption spectrophotometry (lambda=213.9 nm). Results: In the study, body mass index and waist circumference were higher in obese women than control group (p < 0.05). The mean plasmatic zinc was 72.2 +/- 9.0 mu g/dl in obese women and 73.4 +/- 8.5 mu g/dl in control group (p > 0.05). The mean erythrocytary zinc was 36.4 +/- 15.0 mu g/gHb and 45.4 +/- 14.3 mu g/gHb in the obese and controls, respectively (p < 0.05). Regression analysis showed that the body mass index (t=-2.85) and waist circumference (t=-2.37) have a negative relationship only with the erythrocytary zinc (R(2)=0.32, p < 0.05). Conclusions: The study shows that there are alterations in biochemical parameters of zinc in obese women, with low zinc concentrations in erythrocytes. Regression analysis demonstrates that the erythrocytary zinc is influenced by biomarkers of the metabolic syndrome, presenting an inverse relationship with the waist circumference and body mass index.
Resumo:
Minor components (polar components) and the degree of unsaturation of the fatty acids are the main factors responsible for the oxidative stability of bulk oils and emulsions. The isolated effects of these two factors and their interaction were evaluated in oil-in-water emulsions stored at 32 A degrees C. Samples of coconut, olive, soybean, linseed and fish oils, both full and stripped of their polar components, were used to prepare the emulsions (1% w/w). The maximum concentration of hydroperoxide (LOOH(max)) and the rate of formation of hydroperoxides (mu mol L(-1) h(-1)) were used to measure the primary products. Hexanal, propanal and malondialdehyde were used to determine the secondary products of the oxidized emulsions containing polyunsaturated fatty acids. LOOH(max) varied from 0.16 to 12.75 mmol/kg among the samples. The interaction between the polar components and the degree of unsaturation of the fatty acids was significant (p < 0.001) when the hydroperoxides were evaluated. In general, the degree of unsaturation (beta(1)) and the absence of polar components (beta(2)), respectively, represented 30 and 20% of the contribution to increase the mean oxidation, with the interaction (beta(12)) contribution being more sensitive to the rate of formation of hydroperoxides (16%) than to the LOOH(max) (5%). The significance of this interaction suggests that both strategies present synergism and should be applied to improve the oxidative stability of food emulsions.
Resumo:
Experimental and clinical studies have established that zinc metabolism is altered in individuals with Down syndrome (DS). The present study intends to evaluate the nutritional status of zinc in children with DS by determining their biochemical and dietary parameters. The investigation was carried out on a group of children with DS (n = 35) and compared with a control group (n = 33), both aging between 4 and 11 years. Weight-for-age, height-for-age, and weight-for-height indexes and diet were evaluated by using a 3-day dietary record. Zinc was evaluated in plasma, erythrocytes, and 24-h urine collection by using the method of atomic absorption spectroscopy. The frequency of short stature was higher in children with DS. Both groups presented high protein content, adequate concentrations of lipids and carbohydrates, and deficit in calories. Adequate zinc intake was observed in 40% of children with DS and in 67% of the control group. Zinc concentrations were significantly lower in plasma and urine and higher in erythrocytes of children with DS. The results allowed us to conclude that the altered zinc nutritional status of individuals with Down syndrome contributes to clinical disturbances that usually appear with aging in these patients.
Resumo:
The diet and plasma lipid patterns associated with lipid oxidation susceptibility in rats fed different doses of polyunsaturated fatty acids (n-3 PUFA) from fish oil were evaluated. Wistar rats were assigned into three groups and received diets containing 8% soybean oil (SOY), 4% soybean oil + 4% fish oil (SOY-FISH) and 8% fish oil (FISH) for 21 days. Linoleic, oleic and alpha-linolenic acids in SOY diets were substituted by myristic, palmitic, palmitoleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in SOY-FISH and FISH diets reducing the n-6/n-3 ratio and increasing the peroxidability index (PI). Increased dietary EPA and DHA were observed in SOY-FISH and FISH plasma at the expense of linoleic and arachidonic acid levels. Saturated fatty acids, which were significantly different between the three diets (P < 0.01), were found at the same concentration in the plasma (P = 0.23). No changes were observed in oxidative stress as measured by the concentration of thiobarbituric acid reactive substances (TBARS) expressed in brain homogenates. However, TBARS concentration in the plasma of the SOY-FISH group was higher than the other two groups (P = 0.02). The major differences between these three groups were the n-3 PUFA content (0.4, 1.8 and 3.2 g/100 g diet) and the saturates/polyunsaturates ratio (0.3, 0.5 and 0.8) for SOY, SOY-FISH, and FISH groups, respectively. Thus, n-3 PUFA intake from fish oil only when followed by a decrease in saturated/polyunsaturated fatty acids ratio increased oxidative susceptibility in rats measured by plasma TBARS concentration. PRACTICAL APPLICATIONS Because fish oil intake is associated with risk reduction for cardiovascular disease, individuals are taking supplements containing a high dose of fish oil. However, there is no scientific consensus if the intake of a high dose of fish oil could increase the oxidative stress. Thus, more studies are necessary to assure the safety of this kind of supplementation.
Resumo:
BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.
Resumo:
The mechanism of uptake of anthocyanins (as well as the type) from food in the intestine is not clear. Anthocyanin-rich extract from wild mulberry, composed of cyanidin-3-glucoside (79%) and cyanidin-3-rutino side (cy-3-rut) (19%), was orally administered to Wistar rats, and their concentrations were determined in plasma, kidney, and the gastrointestinal (GI) tract. The 2 glycosylated forms showed maximum concentration at 15 minutes after oral administration, both in plasma and kidney. The cyanidin-3-glucoside and cy-3-rut were found in plasma as glucuronides, as sulfates of cyanidin, and as unchanged forms. The area under the curve of concentration vs time (AUC(0-8h)) was 2.76 +/- 0.88 mu g hour/mL and 9.74 +/- 0.75 mu g hour/g for plasma and kidney, respectively. In spite of the low absorption, the increase in plasma anthocyanin level resulted in a significant increase in antioxidant capacity (P < .05). In the GI tract (stomach and small and large intestines), cyanidin glycosides were found unchanged, but a low amount of the aglycone form was present. Anthocyanin glycosides were no longer detected in the GI tract after 8 hours of administration. In vitro fermentation showed that the 2 cyanidin glycosides were totally metabolized by the rat colonic microflora, explaining their disappearance. In addition, the 2 products of their degradation, cyanidin and protocatechuic acid, were not detected in plasma and probably do not influence plasma antioxidant capacity. As found by the everted sac model, anthocyanins were transported across the enterocyte by the sodium-dependent glucose transporter. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Introduction: Although the combination of statins with n-3 fatty acids seems to be beneficial under the lipid profile aspect, there is little information about the interaction of these two compounds on oxidative stress. Objective: Evaluate the interaction between statins and n-3 fatty acids on oxidative stress in women, using a 2(2) factorial design. Methods: Forty-three women participated in this crossover design. They were separated into two groups in which 20 were under statin treatment for more than 6 months, and 23 were normolipidemic. Within each group, half of the patients received capsules containing 2.4 g/day of a mixture of EPA and DHA for 6 weeks, while the other half received a mixture of soya and corn oil. After a period of 90 days of washout, the groups were switched, and received the supplementation for 6 weeks more. Results: Statins reduced serum LDL and increased SOD expression. n-3 fatty acids increased the plasma malondialdehyde and SOD activity but reduced catalase expression (p < 0.05). The interaction involving statins and n-3 fatty acids was nearly significant to the serum triacylglycerol reduction (p = 0.054). Conclusion: Combining statins and n-3 fatty acids is an excellent strategy to reduce plasma cholesterol and triacylglycerol concentration in women. However, n-3 fatty acids increased the oxidative stress and the pleiotropic effect of statins seemed to be not enough to counterbalance this result. Our data also suggested that the mechanism by which n-3 fatty acids interfere in oxidative stress can be associated with antioxidant enzymes expression and activity. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Oxidative stress is a physiological condition that is associated with atherosclerosis. and it can be influenced by diet. Our objective was to group fifty-seven individuals with dyslipidaemia controlled by statins according to four oxidative biomarkers, and to evaluate the diet pattern and blood biochemistry differences between these groups. Blood samples were collected and the following parameters were evaluated: diet intake; plasma fatty acids; lipoprotein concentration; glucose; oxidised LDL (oxLDL); malondialdehyde (MDA): total antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability power assays. Individuals were separated into five groups by cluster analysis. All groups showed a difference with respect to at least one of the four oxidative stress biomarkers. The separation of individuals in the first axis was based upon their total antioxidant activity. Clusters located on the right side showed higher total antioxidant activity, higher myristic fatty acid and lower arachidonic fatty acid proportions than clusters located on the left side. A negative correlation was observed between DPPH and the peroxidability index. The second axis showed differences in oxidation status as measured by MDA and oxLDL concentrations. Clusters located on the Upper side showed higher oxidative status and lower HDL cholesterol concentration than clusters located on the lower side. There were no differences in diet among the five clusters. Therefore, fatty acid synthesis and HDL cholesterol concentration seem to exert a more significant effect on the oxidative conditions of the individuals with dyslipidaemia controlled by statins than does their food intake.
Resumo:
Objective: Looking for possible neuroimmune relationships, we analyzed the effects of methylenedioxymethamphetamine (MDMA) administration on neuroendocrine, neutrophil activity and leukocyte distribution in mice. Methods: Five experiments were performed. In the first, mice were treated with MDMA (10 mg/kg) 30, 60 min and 24 h prior to blood sample collection for neutrophil activity analysis. In the second experiment, the blood of nave mice was collected and incubated with MDMA for neutrophil activity in vitro analysis. In the third and fourth experiments, mice were injected with MDMA (10 mg/kg) and 60 min later, blood and brain were collected to analyze corticosterone serum levels and hypothalamic noradrenaline (NA) levels and turnover. In the last experiment, mice were injected with MDMA 10 mg/kg and 60 min later, blood, bone marrow and spleen were collected for leukocyte distribution analysis. Results: Results showed an increase in hypothalamic NA turnover and corticosterone serum levels 60 min after MDMA (10 mg/kg) administration, a decrease in peripheral blood neutrophil oxidative burst and a decrease in the percentage and intensity of neutrophil phagocytosis. It was further found that MDMA (10 mg/kg) treatment also altered leukocyte distribution in blood, bone marrow and spleen. In addition, no effects were observed for MDMA after in vitro exposure both in neutrophil oxidative burst and phagocytosis. Conclusion: The effects of MDMA administration (10 mg/kg) on neutrophil activity and leukocyte distribution might have been induced indirectly through noradrenergic neurons and/or hypothalamic-pituitary-adrenal axis activations. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Objectives: To evaluate biomarkers of endothelial dysfunction and oxidative stress in glucose intolerance (GI) compared to overt diabetes (DM2). Design and methods: 140 volunteers including 96 with DM2, 32 with GI and 12 controls (C) were Studied. NO metabolites, NO synthase inhibitors. thiols and N-acetyl-beta-glucosaminidase (NAGase) activity were analyzed by chemiluminescence, capillary electrophoresis, ELISA and colorimetric assay, respectively. Results: (center dot)NO metabolites were higher in GI (NOx: P=0.03 S-nitrosothiols: p=0.001) and DM2 (p=0.006; p=0.0006) groups in relation to group C, while nitrotyrosine was higher only in the DM2 group in comparison 10 the other groups. NAGase activity was elevated in GI (p=0.003) and DM2 (p=0.0004) groups in relation to group C, as well as, ADMA (p=0.01: p=0.003) and GSSG (p=0.01 p=0.002). Conclusions: (center dot)NO metabolites. (center dot)NO synthase inhibitors. thiols and NAGase are biomarkers Suitable to indicate endothelial dysfunction and oxidative stress in the early stages of impaired response to insulin. (c) 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
A variety of raw materials have been used in fermentation process. This study shows the use of rice straw hemicellulosic hydrolysate, as the only source of nutrient, to produce high added-value products. In the present work, the activity of the enzymes xylose reductase (XR); xylitol dehydrogenase (XD); and glucose-6-phosphate dehydrogenase (G6PD) during cultivation of Candida guilliermondii on rice straw hemicellulosic hydrolysate was measured and correlated with xylitol production under different pH values (around 4.5 and 7.5) and initial xylose concentration (around 30 and 70 g l(-1)). Independent of the pH value and xylose concentration evaluated, the title of XD remained constant. On the other hand, the volumetric activity of G6PD increased whereas the level of XR decreased when the initial xylose concentration was increased from 30 to 70 g l(-1). The highest values of xylitol productivity (Q (P) a parts per thousand 0.40 g l(-1)) and yield factor (Y (P/S) a parts per thousand 0.60 g g(-1)) were reached at highest G6PD/XR ratio and lowest XR/XD ratio. These results suggest that NADPH concentrations influence the formation of xylitol more than the activity ratios of the enzymes XR and XD. Thus, an optimal rate between G6PD and XR must be reached in order to optimize the xylitol production.
Resumo:
Introduction: Zinc deficiency has been associated with damage and oxidative changes in DNA that may increase an individual`s risk of cancer. Furthermore, zinc metabolism may be affected in cancer patients, leading to alterations in its distribution that would favor carcinogenesis. Plasma and erythrocyte zinc levels in women with breast cancer were evaluated in this cross-sectional, controlled study. Material and methods: Fifty-five premenopausal women of 25 to 49 years of age with and without breast cancer were divided into two groups: Group A, composed of women without breast cancer (controls, n = 26) and Group B, composed of women with breast cancer (cases, n = 29). Plasma and erythrocyte zinc levels were measured by flame atomic absorption spectrophotometry at gamma = 213.9 nm. Diet was assessed using the 3-day diet recall method and analyzed using the NutWin software program, version 1.5. Student`s t-test was used to compare means and significance was established at p <0.05. Results: Mean plasma zinc levels were 69.69 +/- 9.00 g/dt, in the breast cancer patients and 65.93 +/- 12.44 g/dt. in the controls (p = 0.201). Mean erythrocyte zinc level was 41.86 +/- 8.28 mu gZn/gHb in the cases and 47.93 +/- 7.00 mu gZn/gHb in the controls (p < 0.05). In both groups, dietary zinc levels were above the estimated average requirement. Conclusions: The present results suggest that zinc levels are lower in the erythrocyte compartment of premenopausal women with breast cancer.
Resumo:
The objective was to use natural pigments to replace sodium erythorbate (NaEry), a synthetic compound used as an antioxidant in sausage formulations, and to evaluate the oxidative stability of the samples. Six assays were prepared in which sodium erythorbate (ERY) at 0.05 g/100 g was substituted by norbixin (NOR), lycopene (LYC), zeaxanthin (ZEA), beta-carotene (CAR) or dextrose (used as a control (CON)). Physical, chemical, color, texture and sensory parameters were measured on the first day and after 45 days of storage at 4 degrees C. All pigments used in the sausage formulations were able to maintain the oxidative stability of the sausages (MDA equivalents <038 mg/kg). Zeaxanthin and norbixin were the most efficient antioxidants of those tested. This antioxidant effect might be associated with the intermediate polarities of these two compounds, which would allow them to concentrate in the membrane lipids or emulsion interface, where lipid oxidation is most prevalent. Other volatile secondary products of oxidation besides MDA should be evaluated in further studies involving natural pigments and sensory oxidative stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Oxidative modification of low-density lipoprotein (LDL) has been demonstrated in patients with end-stage renal disease, where it is associated with oxidative stress and plays a key role in the pathogenesis of atherosclerosis. In this context, the generation of minimally oxidized LDL, also called electronegative LDL [ LDL(-)], has been associated with active disease, and is a detectable sign of atherogenic tendencies. The purpose of this study was to evaluate serum LDL(-) levels and anti-LDL(-)IgG autoantibodies in end-stage renal disease patients on dialysis, comparing patients on hemodialysis (HD), peritoneal dialysis (PD) and a control group. In addition, the serum lipid profile, nutritional status, biochemical data and parameters of mineral metabolism were also evaluated. Methods: The serum levels of LDL(-) and anti-LDL(-) IgG autoantibodies were measured in 25 patients undergoing HD and 11 patients undergoing PD at the Centro Integradode Nefrologia, Rio de Janeiro, Brazil. Ten healthy subjects served as a control group. Serum levels of albumin, total cholesterol, triglycerides and lipoproteins were measured. Calculations of subjects` body mass index and measurements of waist circumference, triceps skin fold and arm muscle area were performed. Measurements of hematocrit, serum blood urea nitrogen, creatinine, parathyroid hormone, phosphorus and calcium were taken. Results: Levels of LDL(-) were higher in HD patients (575.6 +/- 233.1 mu g/ml) as compared to PD patients (223.4 +/- 117.5 mu g/ml, p < 0.05), which in turn were higher than in the control group (54.9 +/- 33.3 mu g/ml, p < 0.01). The anti-LDL(-) IgG autoantibodies were increased in controls (0.36 +/- 0.09 mu g/ ml) as compared to PD (0.28 +/- 0.12 mu g/ml, p < 0.001) and HD patients (0.2 +/- 0.1 mu g/ml, p < 0.001). The mean values of total cholesterol and LDL were considered high in the PD group, whereas the mean triceps skin fold was significantly lower in the HD group. Conclusion: Levels of LDL(-) are higher in renal patients on dialysis than in normal individuals, and are reciprocally related to IgG autoantibodies. LDL(-) may be a useful marker of oxidative stress, and this study suggests that HD patients are more susceptible to cardiovascular risk due to this condition. Moreover, autoantibodies reactive to LDL(-) may have protective effects in chronic kidney disease. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
The use of the classic aromatic antiepileptic drugs (AAEDs) has recently been expanded to a broad spectrum of psychiatric and neurological disorders. However, the clinical use of these drugs is limited by several adverse effects, mainly idiosyncratic hepatotoxicity. AAED-induced hepatotoxicity has been attributed to a defective detoxification by the epoxide hydrolase and accumulation of arene oxides. The underlying mechanism has been proposed as immune-mediated, but direct toxicity has also been suggested. In general, idiosyncratic drug-induced hepatotoxicity may be mediated, at least in part, by oxidative stress. On the other hand, the oxidative stress induced by the AAED metabolites has not been demonstrated yet. Therefore, in the present study we have evaluated the induction of oxidative stress by three classical AAEDs: carbamazepine. phenytoin and phenobarbital as well as by their metabolites. The toxic effects of the metabolites were evaluated by incubating the drug with rat liver microsomes. The AAED-induced oxidative stress was demonstrated by the increased malondialdehyde levels, oxidation of cardiolipin; oxidation of sulfhydryl proteins and alteration of the cellular redox status. Results suggest that the hepatotoxicity associated with AAED might be mediated by the oxidative stress induced by the drugs metabolites. (C) 2008 Elsevier Ltd. All rights reserved