897 resultados para Nose.
Resumo:
During Ocean Drilling Program Leg 171B, an Aptian to Turonian sedimentary succession yielding exceptionally well-preserved planktonic foraminiferal faunas was recovered at Sites 1049, 1050, and 1052. Most of the standard Tethyan planktonic foraminiferal zones have been recognized within the mid-Cretaceous section, with the exception of two Albian zones not reached by any of the drilled holes. In addition, some emphasis is brought here on the current problems concerning the definition of the Aptian/Albian and Albian/Cenomanian boundaries.
Resumo:
The solid-state-physics technique of electron spin resonance (ESR) has been employed in an exploratory study of marine limestones and impact-related deposits from Cretaceous-Tertiary (KT) boundary sites including Spain (Sopelana and Caravaca), New Jersey (Bass River), the U.S. Atlantic continental margin (Blake Nose, ODP Leg 171B/1049/A), and several locations in Belize and southern Mexico within -600 km of the Chicxulub crater. The ESR spectra of SO3(1-) (a radiation-induced point defect involving a sulfite ion substitutional for CO3(2-) which has trapped a positive charge) and Mn(2+) in calcite were singled out for analysis because they are unambiguously interpretable and relatively easy to record. ESR signal strengths of calcite-related SO3(1-) and Mn(2+) have been studied as functions of stratigraphic position in whole-rock samples across the KT boundary at Sopelana, Caravaca, and Blake Nose. At all three of these sites, anomalies in SO3(1-) and/or Mn(2+) intensities are noted at the KT boundary relative to the corresponding background levels in the rocks above and below. At Caravaca, the SO3(1-) background itself is found to be lower by a factor of 2.7 in the first 30,000 years of the Tertiary relative to its steady-state value in the last 15,000 years of the Cretaceous, indicating either an abrupt and quasi-permanent change in ocean chemistry (or temperature) or extinction of the marine biota primarily responsible for fixing sulfite in the late Cretaceous limestones. An exponential decrease in the Mn(2+) concentration per unit mass calcite, [Mn(2+)], as the KT boundary at Caravaca is approached from below (1/e characteristic length =1.4 cm) is interpreted as a result of post-impact leaching of the seafloor. Absolute ESR quantitative analyses of proximal impact deposits from Belize and southern Mexico group naturally into three distinct fields in a twodimensional [SO3(1-)]-versus-[Mn(2+)] scatter plot. These fields contain (I) limestone ejecta clasts, (II) accretionary lapilli, and (III) a variety of SO3(1-) -depleted/Mn(2+) enriched impact deposits. Data for the investigated non-impact-related Cretaceous and Tertiary marine limestones (Spain and Blake Nose) fall outside of these three fields. With reference to thes enon-impact deposits, fields I, II, and III can be respectively characterized as Mn(2+) -depleted, SO3(1-) -enhanced, and SO3(1-) -depleted. It is proposed that (1) field I represents calcites from the Yucatin Platform, and that the Mn(2+) -depleted signature can be used as an indicator of primary Chicxulub ejecta in deep marine environments and (2) field II represents calcites that include a component formed in the vapor plume, either from condensation in the presence of CO2/SO3(1-) -rich vapors, or reactions between CaO and CO2/SO3 rich vapors, and that this SO3(1-) -enhanced signature can be used as an indicator of impact vapor plume deposits. Given these two propositions, the ESR data for the Blake Nose deposits are ascribed to the presence of basal coarse calcitic Chicxulub ejecta clasts, while the finer components that are increasingly represented toward the top are interpreted to contain high- SO3(1-) calcite from the vapor plume. The apparently-undisturbed Bass River deposit may contain even higher concentrations of vapor-plume calcite. None of the three components included in field III appear to be represented at distal, deep marine KT-boundary sites; this field may include several types of impact-related deposits of diverse origins and diagenetic histories.
Resumo:
Radiolarian cherts in the Tethyan realm of Jurassic age were recently interpreted as resulting from high biosiliceous productivity along upwelling zones in subequatorial paleolatitudes the locations of which were confirmed by revised paleomagnetic estimates. However, the widespread occurrence of cherts in the Eocene suggests that cherts may not always be reliable proxies of latitude and upwelling zones. In a new survey of the global spatio-temporal distribution of Cenozoic cherts in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sediment cores, we found that cherts occur most frequently in the Paleocene and early Eocene, with a peak in occurrences at ~50 Ma that is coincident with the time of highest bottom water temperatures of the early Eocene climatic optimum (EECO) when the global ocean was presumably characterized by reduced upwelling efficiency and biosiliceous productivity. Cherts occur less commonly during the subsequent Eocene global cooling trend. Primary paleoclimatic factors rather than secondary diagenetic processes seem therefore to control chert formation. This timing of peak Eocene chert occurrence, which is supported by detailed stratigraphic correlations, contradicts currently accepted models that involve an initial loading of large amounts of dissolved silica from enhanced weathering and/or volcanism in a supposedly sluggish ocean of the EECO, followed during the subsequent middle Eocene global cooling by more vigorous oceanic circulation and consequent upwelling that made this silica reservoir available for enhanced biosilicification, with the formation of chert as a result of biosilica transformation during diagenesis. Instead, we suggest that basin-basin fractionation by deep-sea circulation could have raised the concentration of EECO dissolved silica especially in the North Atlantic, where an alternative mode of silica burial involving widespread direct precipitation and/or absorption of silica by clay minerals could have been operative in order to maintain balance between silica input and output during the upwelling-deficient conditions of the EECO. Cherts may therefore not always be proxies of biosiliceous productivity associated with latitudinally focused upwelling zones.
Resumo:
The full suite of magnetic polarity chrons from Subchron M''-2r'' (early Albian) through Chron C13r (latest Eocene) were resolved at one or more Ocean Drilling Program sites on the Blake Nose salient of the Florida continental margin. These sediments preserve diverse assemblages of calcareous and siliceous microfossils; therefore, the composite suite provides a reference section for high-resolution correlation of biostratigraphic datums to magnetic polarity chrons of the Late Cretaceous and Paleogene. Relative condensation or absence of polarity zones at different sites along the transect enhance the recognition and dating of depositional sequences and unconformities within the margin succession. A stable paleolatitude of ~25°N was maintained from the late Aptian through Eocene.
Resumo:
Geochemical analyses of extraordinarily well preserved late Aptian-early Albian foraminifera from Blake Nose (Ocean Drilling Program Site 1049) reveal rapid shifts of d18O, d13C, and 87Sr/88Sr in the subtropical North Atlantic that may be linked to a major planktic foraminifer extinction event across the Aptian/Albian boundary. The abruptness of the observed geochemical shifts and their coincidence with a sharp lithologic contact is explained as an artifact of a previously undetected hiatus of 0.8-1.4 million years at the boundary contact, but the values before and after the hiatus indicate that major oceanographic changes occurred at this time. 87Sr/88Sr increase by ~0.000200, d13C values decrease by 1.5 per mil to 2.2 per mil, and d18O values decrease by ~1.0 per mil (planktics) to 0.5 per mil (benthics) across the hiatus. Further, both 87Sr/88Sr ratios and d18O values during the Albian are anomalously high. The 87Sr/88Sr values deviate from known patterns to such a degree that an explanation requires either the presence of inter-basin differences in seawater 87Sr/88Sr during the Albian or revision of the seawater curve. For d18O, planktic values in some Aptian samples likely reflect a diagenetic overprint, but preservation is excellent in the rest of the section. In well preserved material, benthic foraminiferal values are largely between 0.5 and 0.0 per mil and planktic samples are largely between 0.0 per mil to -1.0 per mil, with a brief excursion to -2.0 per mil during OAE 1b. Using standard assumptions for Cretaceous isotopic paleotemperature calculations, the d18O values suggest bottom water temperatures (at ~1000 -1500 m) of 8-10°C and surface temperatures of 10-14°C, which are 4-6°C and 10-16°C cooler, respectively, than present-day conditions at the same latitude. The cool subtropical sea surface temperature estimates are especially problematic because other paleoclimate proxy data for the mid-Cretaceous and climate model predictions suggest that subtropical sea surface temperatures should have been the same as or warmer than at present. Because of their exquisite preservation, whole scale alteration of the analyzed foraminifera is an untenable explanation. Our proposed solution is a high evaporative fractionation factor in the early Albian North Atlantic that resulted in surface waters with higher d18O values at elevated salinities than commonly cited in Cretaceous studies. A high fractionation factor is consistent with high rates of vapor export and a vigorous hydrological cycle and, like the Sr isotopes, implies limited connectivity among the individual basins of the Early Cretaceous proto-Atlantic ocean.
Resumo:
Abstract: Ocean Drilling Program Sites 1001A (Caribbean Sea) and 1050C (western North Atlantic) display obliquity and precession cycles throughout polarity zone C27 of the late Danian stage (earliest Cenozoic time). Sliding-window spectra analysis and direct cycle counting on downhole logs and high-resolution Fe variations at both sites yield the equivalent of 35-36 obliquity cycles. This cycle-tuned duration for polarity chron C27 of 1.45 Ma (applying a modern mean obliquity period of 40.4 ka) is consistent with trends from astronomical tuning of early Danian polarity chron C29 and 40Ar/39Ar age calibration of the Campanian-Maastrichtian magnetic polarity time scale. The cycle-tuned Danian stage (sensu Berggren et al. 1995, in SEPM Special Publications, 54, 129-212) spans 3.65 Ma (65.5-61.85 Ma). Spreading rates on a reference South Atlantic synthetic profile display progressive slowing during the Maastrichtian to Danian stages, then remained relatively constant through late Palaeocene and early Eocene time.
Resumo:
Late Cretaceous fish debris from Demerara Rise exhibits a dramatic positive excursion of 8 e-Nd units during ocean anoxic event 2 (OAE2) that is superimposed on extremely low e-Nd(t) values (-14 to -16.5) observed throughout the rest of the studied interval. The OAE2 e-Nd excursion is the largest yet documented in marine sediments, and the majority of the shift is estimated to have occurred over <20 k.y. Low background e-Nd values on Demerara Rise are explained as the Nd isotopic signature of the South American craton, whereas eruptions of the Caribbean large igneous province or enhanced mixing of intermediate waters in the North Atlantic could have caused the excursion.
Resumo:
Quantifying phosphorus (P) concentrations in marine sediments is necessary for constraining the oceanic record of phosphorus burial and helps to constrain P sedimentary geochemistry. To understand P geochemistry in the sediments, we must determine the geochemical forms of P as well as the transformations occurring between these P components with depth and age. Although several records now exist of P geochemistry in the western and eastern equatorial Pacific (Filippelli and Delaney, 1995, doi:10.2973/odp.proc.sr.138.144.1995; 1996, doi:10.1016/0016-7037(96)00042-7), the western equatorial Atlantic (Delaney and Anderson, 1997, doi:10.2973/odp.proc.sr.154.124.1997), the California Current (Delaney and Anderson, in press), and the Benguela Current (Anderson et al., 2001, doi:10.1029/2000GB001270), most of these are Neogene records. Relatively little data exist from sediments of the Paleogene or Cretaceous, time periods when carbon isotope records indicate major carbon shifts and when the nature of P geochemistry has not been well constrained. Samples from several sites at various water depths, oceanographic regions, and ages are needed to understand how P geochemistry and burial in sediments reflect ocean history. We determined P geochemistry and reactive P concentrations in Atlantic sediments of Eocene to Cretaceous age. These are the first records of P geochemistry with good age control from this period. Blake Nose sites are ideal for investigating P geochemistry, as the sediments are shallowly buried at a range of water depths and sedimentation rates. We determined P concentrations and geochemistry, along with calcium carbonate contents, in mid-Cretaceous to upper Eocene sediments drilled on Blake Nose (Ocean Drilling Program Leg 171B) in a depth transect of four sites (Sites 1052, 1051, 1050, and 1049; water depths: 1345, 1983, 2300, and 2656 m, respectively).
Resumo:
A late Albian-early Cenomanian record (~103.3 to 99.0 Ma), including organic-rich deposits and a d13C increase associated with oceanic anoxic event 1d (OAE 1d), is described from Ocean Drilling Program sites 1050 and 1052 in the subtropical Atlantic. Foraminifera are well preserved at these sites. Paleotemperatures estimated from benthic d18O values average ~14°C for middle bathyal Site 1050 and ~17°C for upper bathyal Site 1052, whereas surface temperatures are estimated to have ranged from 26°C to 31°C at both sites. Among planktonic foraminifera, there is a steady balance of speciation and extinction with no discrete time of major faunal turnover. OAE 1d is recognized on the basis of a 1.2 per mill d13C increase (~100.0-99.6 Ma), which is similar in age and magnitude to d13C excursions documented in the North Atlantic and western Tethys. Organic-rich "black shales" are present throughout the studied interval at both sites. However, deposition of individual black shale beds was not synchronous between sites, and most of the black shale was deposited before the OAE 1d d13C increase. A similar pattern is observed at the other sites where OAE 1d has been recognized indicating that the site(s) of excess organic carbon burial that could have caused the d13C increase has (have) yet to be found. Our findings add weight to the view that OAEs should be chemostratigraphically (d13C) rather than lithostratigraphically defined.