899 resultados para Neuronal Organization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG and OMgp, share two common neuronal receptors: NgR1, together with its co-receptors (p75(NTR), TROY and Lingo-1), and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study during in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes such as development, neuronal homeostasis, plasticity and neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose has been considered the major, if not the exclusive, energy substrate for the brain. But under certain physiological and pathological conditions other substrates, namely monocarboxylates (lactate, pyruvate and ketone bodies), can contribute significantly to satisfy brain energy demands. These monocarboxylates need to be transported across the blood-brain barrier or out of astrocytes into the extracellular space and taken up into neurons. It has been shown that monocarboxylates are transported by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, MCT2 is the predominant neuronal isoform and little is known about the regulation of its expression. Noradrenaline (NA), insulin and IGF-1 were previously shown to enhance the expression of MCT2 in cultured cortical neurons via a translational mechanism. Here we demonstrate that the well known brain neurotrophic factor BDNF enhances MCT2 protein expression in cultured cortical neurons and in synaptoneurosome preparations in a time- and concentrationdependent manner without affecting MCT2 mRNA levels. We observed that BDNF induced MCT2 expression by activation of MAPK as well as PI3K/Akt/mTOR signaling pathways. Furthermore, we investigated the possible post-transcriptional regulation of MCT2 expression by a neuronal miRNA. Then, we demonstrated that BDNF enhanced MCT2 expression in the hippocampus in vivo, in parallel with some post-synaptic proteins such as PSD95 and AMPA receptor GluR2/3 subunits, and two immediate early genes Arc and Zif268 known to be expressed in conditions related to synaptic plasticity. In the last part, we demonstrated in vivo that a downregulation of hippocampal MCT2 via silencing with an appropriate lentiviral vector in mice caused an impairment of working memory without reference memory deficit. In conclusion, these results suggest that regulation of neuronal monocarboxylate transporter MCT2 expression could be a key event in the context of synaptic plasticity, allowing an adequate energy substrate supply in situations of altered synaptic efficacy. - Le glucose représente le substrat énergétique majeur pour le cerveau. Cependant, dans certaines conditions physiologiques ou pathologiques, le cerveau a la capacité d'utiliser des substrats énergéiques appartenant à la classe des monocarboxylates (lactate, pyruvate et corps cétoniques) afin de satisfaire ses besoins énergétiques. Ces monocarboxylates doivent être transportés à travers la barrière hématoencéphalique mais aussi hors des astrocytes vers l'espace extracellulaire puis re-captés par les neurones. Leur transport est assuré par une famillle de transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, les neurones expriment principalement l'isoforme MCT2 mais peu d'informations sont disponibles concernant la régulation de son expression. Il a été montré que la noradrénaline, l'insuline et l'IGF-1 induisent l'expression de MCT2 dans des cultures de neurones corticaux par un mécanisme traductionnel. Dans cette étude nous démontrons dans un premier temps que le facteur neurotrophique BDNF augmente l'expression de MCT2 à la fois dans des cultures de neurones corticaux et dans les préparations synaptoneurosomales selon un décours temporel et une gamme de concentrations propre. Aucun changement n'a été observé concernant les niveaux d'ARNm de MCT2. Nous avons observé que le BDNF induisait l'expression de MCT2 par l'activation simultanée des voies de signalisation MAPK et PI3K/Akt/mTOR. De plus, nous nous sommes intéressés à une potentielle régulation par les micro-ARNs de la synthèse de MCT2. Ensuite, nous avons démontré que le BDNF induit aussi l'expression de MCT2 dans l'hippocampe de la souris en parallèle avec d'autres protéines post-synaptiques telles que PSD95 et GluR2/3 et avec deux « immediate early genes » tels que Arc et Zif268 connus pour être exprimés dans des conditions de plasticité synaptique. Dans un dernier temps, nous avons démontré qu'une diminution d'expression de MCT2 induite par le biais d'un siRNA exprimé via un vecteur lentiviral dans l'hippocampe de souris générait des déficits de mémoire de travail sans affecter la mémoire de référence. En conclusion, ces résultats nous suggèrent que le transporteur aux monocarboxylates neuronal MCT2 serait essentiel pour l'apport énergétique du lactate pour les neurones dans des conditions de haute activité neuronale comme c'est le cas pendant les processus de plasticité synaptique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCT2 is the major neuronal monocarboxylate transporter (MCT) that allows the supply of alternative energy substrates such as lactate to neurons. Recent evidence obtained by electron microscopy has demonstrated that MCT2, like alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, is localized in dendritic spines of glutamatergic synapses. Using immunofluorescence, we show in this study that MCT2 colocalizes extensively with GluR2/3 subunits of AMPA receptors in neurons from various mouse brain regions as well as in cultured neurons. It also colocalizes with GluR2/3-interacting proteins, such as C-kinase-interacting protein 1, glutamate receptor-interacting protein 1 and clathrin adaptor protein. Coimmunoprecipitation of MCT2 with GluR2/3 and C-kinase-interacting protein 1 suggests their close interaction within spines. Parallel changes in the localization of both MCT2 and GluR2/3 subunits at and beneath the plasma membrane upon various stimulation paradigms were unraveled using an original immunocytochemical and transfection approach combined with three-dimensional image reconstruction. Cell culture incubation with AMPA or insulin triggered a marked intracellular accumulation of both MCT2 and GluR2/3, whereas both tumor necrosis factor alpha and glycine (with glutamate) increased their cell surface immunolabeling. Similar results were obtained using Western blots performed on membrane or cytoplasm-enriched cell fractions. Finally, an enhanced lactate flux into neurons was demonstrated after MCT2 translocation on the cell surface. These observations provide unequivocal evidence that MCT2 is linked to AMPA receptor GluR2/3 subunits and undergoes a similar translocation process in neurons upon activation. MCT2 emerges as a novel component of the synaptic machinery putatively linking neuroenergetics to synaptic transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms that guide progenitor cell fate and differentiation in the vertebrate central nervous system (CNS) are poorly understood. Gain-of-function experiments suggest that Notch signaling is involved in the early stages of mammalian neurogenesis. On the basis of the expression of Notch1 by putative progenitor cells of the vertebrate CNS, we have addressed directly the role of Notch1 in the development of the mammalian brain. Using conditional gene ablation, we show that loss of Notch1 results in premature onset of neurogenesis by neuroepithelial cells of the midbrain-hindbrain region of the neural tube. Notch1-deficient cells do not complete differentiation but are eliminated by apoptosis, resulting in a reduced number of neurons in the adult cerebellum. We have also analyzed the effects of Notch1 ablation on gliogenesis in vivo. Our results show that Notch1 is required for both neuron and glia formation and modulates the onset of neurogenesis within the cerebellar neuroepithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and development of transverse and crescentic sand bars in the coastal marine environment has been investigated by means of a nonlinear numerical model based on the shallow-water equations and on a simpli ed sediment transport parameterization. By assuming normally approaching waves and a saturated surf zone, rhythmic patterns develop from a planar slope where random perturbations of small amplitude have been superimposed. Two types of bedforms appear: one is a crescentic bar pattern centred around the breakpoint and the other, herein modelled for the rst time, is a transverse bar pattern. The feedback mechanism related to the formation and development of the patterns can be explained by coupling the water and sediment conservation equations. Basically, the waves stir up the sediment and keep it in suspension with a certain cross-shore distribution of depth-averaged concentration. Then, a current flowing with (against) the gradient of sediment concentration produces erosion (deposition). It is shown that inside the surf zone, these currents may occur due to the wave refraction and to the redistribution of wave breaking produced by the growing bedforms. Numerical simulations have been performed in order to understand the sensitivity of the pattern formation to the parameterization and to relate the hydro-morphodynamic input conditions to which of the patterns develops. It is suggested that crescentic bar growth would be favoured by high-energy conditions and ne sediment while transverse bars would grow for milder waves and coarser sediment. In intermediate conditions mixed patterns may occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: EEG and serum neuron-specific enolase (NSE) are used for outcome prognostication in patients with postanoxic coma; however, it is unclear if EEG abnormalities reflect transient neuronal dysfunction or neuronal death. To assess this question, EEG abnormalities were correlated with NSE. Moreover, NSE cutoff values and hypothermic EEG features related with poor outcome were explored.¦METHODS: In a prospective cohort of 61 adults treated with therapeutic hypothermia (TH) after cardiac arrest (CA), multichannel EEG recorded during TH was assessed for background reactivity and continuity, presence of epileptiform transients, and correlated with serum NSE collected at 24-48 hours after CA. Demographic, clinical, and functional outcome data (at 3 months) were collected and integrated in the analyses.¦RESULTS: In-hospital mortality was 41%, and 82% of survivors had good neurologic outcome at 3 months. Serum NSE and EEG findings were strongly correlated (Spearman rho = 0.45; p < 0.001). Median NSE peak values were higher in patients with unreactive EEG background (p < 0.001) and discontinuous patterns (p = 0.001). While all subjects with nonreactive EEG died, 5 survivors (3 with good outcome) had NSE levels >33 μg/L.¦CONCLUSION: The correlation between EEG during TH and serum NSE levels supports the hypothesis that early EEG alterations reflect permanent neuronal damage. Furthermore, this study confirms that absent EEG background reactivity and presence of epileptiform transients are robust predictors of poor outcome after CA, and that survival with good neurologic recovery is possible despite serum NSE levels> 33 μg/L. This underscores the importance of multimodal assessments in this setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Intravenously administered antimicrobial agents have been the standard choice for the empirical management of fever in patients with cancer and granulocytopenia. If orally administered empirical therapy is as effective as intravenous therapy, it would offer advantages such as improved quality of life and lower cost. METHODS: In a prospective, open-label, multicenter trial, we randomly assigned febrile patients with cancer who had granulocytopenia that was expected to resolve within 10 days to receive empirical therapy with either oral ciprofloxacin (750 mg twice daily) plus amoxicillin-clavulanate (625 mg three times daily) or standard daily doses of intravenous ceftriaxone plus amikacin. All patients were hospitalized until their fever resolved. The primary objective of the study was to determine whether there was equivalence between the regimens, defined as an absolute difference in the rates of success of 10 percent or less. RESULTS: Equivalence was demonstrated at the second interim analysis, and the trial was terminated after the enrollment of 353 patients. In the analysis of the 312 patients who were treated according to the protocol and who could be evaluated, treatment was successful in 86 percent of the patients in the oral-therapy group (95 percent confidence interval, 80 to 91 percent) and 84 percent of those in the intravenous-therapy group (95 percent confidence interval, 78 to 90 percent; P=0.02). The results were similar in the intention-to-treat analysis (80 percent and 77 percent, respectively; P=0.03), as were the duration of fever, the time to a change in the regimen, the reasons for such a change, the duration of therapy, and survival. The types of adverse events differed slightly between the groups but were similar in frequency. CONCLUSIONS: In low-risk patients with cancer who have fever and granulocytopenia, oral therapy with ciprofloxacin plus amoxicillin-clavulanate is as effective as intravenous therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual areas 17 and 18 were studied with morphometric methods for numbers of neurons, glia, senile plaques (SP), and neurofibrillary tangles (NFT) in 13 cases of Alzheimer's disease (AD) as compared to 11 controls. In AD cases, the mean neuronal density was significantly decreased by about 30% in both areas 17 and 18, while the glial density was increased significantly only in area 17. The volume of area 17 was unchanged in AD cases but its total number of neurons was decreased by 33% and its total number of glia increased by 45% compared to controls. In AD the number of SP was similar in areas 17 and 18, while that of NFT was significantly higher in area 18. The number of neurons with NFT was only 2% in area 17 and about 10% in area 18. The discrepancy between the loss of neurons and the amount of NFT suggests that neuronal loss can occur without passing through NFT degeneration. The deposition of SP was correlated with glial proliferation, but not with neuronal loss or neurofibrillary degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial hearing refers to a set of abilities enabling us to determine the location of sound sources, redirect our attention toward relevant acoustic events, and recognize separate sound sources in noisy environments. Determining the location of sound sources plays a key role in the way in which humans perceive and interact with their environment. Deficits in sound localization abilities are observed after lesions to the neural tissues supporting these functions and can result in serious handicaps in everyday life. These deficits can, however, be remediated (at least to a certain degree) by the surprising capacity of reorganization that the human brain possesses following damage and/or learning, namely, the brain plasticity. In this thesis, our aim was to investigate the functional organization of auditory spatial functions and the learning-induced plasticity of these functions. Overall, we describe the results of three studies. The first study entitled "The role of the right parietal cortex in sound localization: A chronometric single pulse transcranial magnetic stimulation study" (At et al., 2011), study A, investigated the role of the right parietal cortex in spatial functions and its chronometry (i.e. the critical time window of its contribution to sound localizations). We concentrated on the behavioral changes produced by the temporarily inactivation of the parietal cortex with transcranial magnetic stimulation (TMS). We found that the integrity of the right parietal cortex is crucial for localizing sounds in the space and determined a critical time window of its involvement, suggesting a right parietal dominance for auditory spatial discrimination in both hemispaces. In "Distributed coding of the auditory space in man: evidence from training-induced plasticity" (At et al., 2013a), study B, we investigated the neurophysiological correlates and changes of the different sub-parties of the right auditory hemispace induced by a multi-day auditory spatial training in healthy subjects with electroencephalography (EEG). We report a distributed coding for sound locations over numerous auditory regions, particular auditory areas code specifically for precise parts of the auditory space, and this specificity for a distinct region is enhanced with training. In the third study "Training-induced changes in auditory spatial mismatch negativity" (At et al., 2013b), study C, we investigated the pre-attentive neurophysiological changes induced with a training over 4 days in healthy subjects with a passive mismatch negativity (MMN) paradigm. We showed that training changed the mechanisms for the relative representation of sound positions and not the specific lateralization themselves and that it changed the coding in right parahippocampal regions. - L'audition spatiale désigne notre capacité à localiser des sources sonores dans l'espace, de diriger notre attention vers les événements acoustiques pertinents et de reconnaître des sources sonores appartenant à des objets distincts dans un environnement bruyant. La localisation des sources sonores joue un rôle important dans la façon dont les humains perçoivent et interagissent avec leur environnement. Des déficits dans la localisation de sons sont souvent observés quand les réseaux neuronaux impliqués dans cette fonction sont endommagés. Ces déficits peuvent handicaper sévèrement les patients dans leur vie de tous les jours. Cependant, ces déficits peuvent (au moins à un certain degré) être réhabilités grâce à la plasticité cérébrale, la capacité du cerveau humain à se réorganiser après des lésions ou un apprentissage. L'objectif de cette thèse était d'étudier l'organisation fonctionnelle de l'audition spatiale et la plasticité induite par l'apprentissage de ces fonctions. Dans la première étude intitulé « The role of the right parietal cortex in sound localization : A chronometric single pulse study » (At et al., 2011), étude A, nous avons examiné le rôle du cortex pariétal droit dans l'audition spatiale et sa chronométrie, c'est-à- dire le moment critique de son intervention dans la localisation de sons. Nous nous sommes concentrés sur les changements comportementaux induits par l'inactivation temporaire du cortex pariétal droit par le biais de la Stimulation Transcrânienne Magnétique (TMS). Nous avons démontré que l'intégrité du cortex pariétal droit est cruciale pour localiser des sons dans l'espace. Nous avons aussi défini le moment critique de l'intervention de cette structure. Dans « Distributed coding of the auditory space : evidence from training-induced plasticity » (At et al., 2013a), étude B, nous avons examiné la plasticité cérébrale induite par un entraînement des capacités de discrimination auditive spatiale de plusieurs jours. Nous avons montré que le codage des positions spatiales est distribué dans de nombreuses régions auditives, que des aires auditives spécifiques codent pour des parties données de l'espace et que cette spécificité pour des régions distinctes est augmentée par l'entraînement. Dans « Training-induced changes in auditory spatial mismatch negativity » (At et al., 2013b), étude C, nous avons examiné les changements neurophysiologiques pré- attentionnels induits par un entraînement de quatre jours. Nous avons montré que l'entraînement modifie la représentation des positions spatiales entraînées et non-entrainées, et que le codage de ces positions est modifié dans des régions parahippocampales.