792 resultados para Neural network based algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data visualization techniques are powerful in the handling and analysis of multivariate systems. One such technique known as parallel coordinates was used to support the diagnosis of an event, detected by a neural network-based monitoring system, in a boiler at a Brazilian Kraft pulp mill. Its attractiveness is the possibility of the visualization of several variables simultaneously. The diagnostic procedure was carried out step-by-step going through exploratory, explanatory, confirmatory, and communicative goals. This tool allowed the visualization of the boiler dynamics in an easier way, compared to commonly used univariate trend plots. In addition it facilitated analysis of other aspects, namely relationships among process variables, distinct modes of operation and discrepant data. The whole analysis revealed firstly that the period involving the detected event was associated with a transition between two distinct normal modes of operation, and secondly the presence of unusual changes in process variables at this time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the language identification (LID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. We show that techniques originally developed for LID on telephone speech (e.g., for the NIST language recognition evaluations) remain effective on the noisy RATS data, provided that careful consideration is applied when designing the training and development sets. In addition, we show significant improvements from the use of Wiener filtering, neural network based and language dependent i-vector modeling, and fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Daño Cerebral Adquirido (DCA) se define como una lesión cerebral que ocurre después del nacimiento y que no guarda relación con defectos congénitos o enfermedades degenerativas. En el cerebro, se llevan a cabo las funciones mentales superiores como la atención, la memoria, las funciones ejecutivas y el lenguaje, consideradas pre-requisitos básicos de la inteligencia. Sea cual sea su causa, todo daño cerebral puede afectar a una o varias de estas funciones, de ahí la gravedad del problema. A pesar de los avances en nuevas técnicas de intervención precoz y el desarrollo de los cuidados intensivos, las afectaciones cerebrales aún no tienen tratamiento ni quirúrgico ni farmacológico que permita una restitución de las funciones perdidas. Los tratamientos de neurorrehabilitación cognitiva y funcional pretenden, por tanto, la minimización o compensación de las alteraciones ocasionadas por una lesión en el sistema nervioso. En concreto, la rehabilitación cognitiva se define como el proceso en el que personas que han sufrido un daño cerebral trabajan de manera conjunta con profesionales de la salud para remediar o aliviar los déficits cognitivos surgidos como consecuencia de un episodio neurológico. Esto se consigue gracias a la naturaleza plástica del sistema nervioso, donde el cerebro es capaz de reconfigurar sus conexiones neuronales, tanto creando nuevas como modificando las ya existentes. Durante los últimos años hemos visto una transformación de la sociedad, en lo que se ha denominado "sociedad de la información", cuyo pilar básico son las Tecnologías de la Información y las Comunicaciones (TIC). La aplicación de estas tecnologías en medicina ha revolucionado la manera en que se proveen los servicios sanitarios. Así, donde tecnología y medicina se mezclan, la telerrehabilitación se define como la rehabilitación a distancia, ayudando a extender los servicios de rehabilitación más allá de los centros hospitalarios, rompiendo las barreras geográficas, mejorando la eficiencia de los procesos y monitorizando en todo momento el estado y evolución del paciente. En este contexto, el objetivo general de la presente tesis es mejorar la rehabilitación neuropsicológica de pacientes que sufren alteraciones cognitivas, mediante el diseño, desarrollo y validación de un sistema de telemedicina que incorpora las TIC para avanzar hacia un nuevo paradigma personalizado, ubicuo y ecológico. Para conseguirlo, se han definido los siguientes objetivos específicos: • Analizar y modelar un sistema de telerrehabilitación, mediante la definición de objetivos y requisitos de usuario para diseñar las diferentes funcionalidades necesarias. • Definir una arquitectura de telerrehabilitación escalable para la prestación de diferentes servicios que agrupe las funcionalidades necesarias en módulos. • Diseñar y desarrollar la plataforma de telerrehabilitación, incluida la interfaz de usuario, creando diferentes roles de usuario con sus propias funcionalidades. • Desarrollar de un módulo de análisis de datos para extraer conocimiento basado en los resultados históricos de las sesiones de rehabilitación almacenadas en el sistema. • Evaluación de los resultados obtenidos por los pacientes después del programa de rehabilitación, obteniendo conclusiones sobre los beneficios del servicio implementado. • Evaluación técnica de la plataforma de telerrehabilitación, así como su usabilidad y la relación coste/beneficio. • Integración de un dispositivo de eye-tracking que permita la monitorización de la atención visual mientras los pacientes ejecutan tareas de neurorrehabilitación. •Diseño y desarrollo de un entorno de monitorización que permita obtener patrones de atención visual. Como resumen de los resultados obtenidos, se ha desarrollado y validado técnicamente la plataforma de telerrehabilitación cognitiva, demostrando la mejora en la eficiencia de los procesos, sin que esto resulte en una reducción de la eficacia del tratamiento. Además, se ha llevado a cabo una evaluación de la usabilidad del sistema, con muy buenos resultados. Respecto al módulo de análisis de datos, se ha diseñado y desarrollado un algoritmo que configura y planifica sesiones de rehabilitación para los pacientes, de manera automática, teniendo en cuenta las características específicas de cada paciente. Este algoritmo se ha denominado Intelligent Therapy Assistant (ITA). Los resultados obtenidos por el asistente muestran una mejora tanto en la eficiencia como en la eficacia de los procesos, comparado los resultados obtenidos con los de la planificación manual llevada a cabo por los terapeutas. Por último, se ha integrado con éxito el dispositivo de eye-tracking en la plataforma de telerrehabilitación, llevando a cabo una prueba con pacientes y sujetos control que ha demostrado la viabilidad técnica de la solución, así como la existencia de diferencias en los patrones de atención visual en pacientes con daño cerebral. ABSTRACT Acquired Brain Injury (ABI) is defined as brain damage that suddenly and unexpectedly appears in people’s life, being the main cause of disability in developed countries. The brain is responsible of the higher cognitive functions such as attention, memory, executive functions or language, which are considered basic requirements of the intelligence. Whatever its cause is, every ABI may affects one or several functions, highlighting the severity of the problem. New techniques of early intervention and the development of intensive ABI care have noticeably improved the survival rate. However, despite these advances, brain injuries still have no surgical or pharmacological treatment to re-establish lost functions. Cognitive rehabilitation is defined as a process whereby people with brain injury work together with health service professionals and others to remediate or alleviate cognitive deficits arising from a neurological insult. This is achieved by taking advantage of the plastic nature of the nervous system, where the brain can reconfigure its connections, both creating new ones, and modifying the previously existing. Neuro-rehabilitation aims to optimize the plastic nature by inducing a reorganization of the neural network, based on specific experiences. Personalized interventions from individual impairment profile will be necessary to optimize the remaining resources by potentiating adaptive responses and inhibiting maladaptive changes. In the last years, some applications and software programs have been developed to train or stimulate cognitive functions of different neuropsychological disorders, such as ABI, Alzheimer, psychiatric disorders, attention deficit or hyperactivity disorder (ADHD). The application of technologies into medicine has changed the paradigm. Telemedicine allows improving the quality of clinical services, providing better access to them and helping to break geographical barriers. Moreover, one of the main advantages of telemedicine is the possibility to extend the therapeutic processes beyond the hospital (e.g. patient's home). As a consequence, a reduction of unnecessary costs and a better costs/benefits ratio are achieved, making possible a more efficient use of the available resources In this context, the main objective of this work is to improve neuro-rehabilitation of patients suffering cognitive deficits, by designing, developing and validating a telemedicine system that incorporates ICTs to change this paradigm, making it more personalized, ubiquitous and ecologic. The following specific objectives have been defined: • To analyse and model a tele-rehabilitation system, defining objectives and user requirements to design the different needed functionalities. • To define a scalable tele-rehabilitation architecture to offer different services grouping functionalities into modules. • To design and develop the tele-rehabilitation platform, including the graphic user interface, creating different user roles and permissions. • To develop a data analysis module to extract knowledge based on the historic results from the rehabilitation sessions stored in the system. • To evaluate the obtained results by patients after the rehabilitation program, arising conclusions about the benefits of the implemented service. • To technically evaluate the tele-rehabilitation platform, and its usability and the costs/benefit ratio. • To integrate an eye-tracking device allowing the monitoring of the visual attention while patients execute rehabilitation tasks. •To design and develop a monitoring environment that allows to obtain visual attention patterns. Summarizing the obtained results, the cognitive tele-rehabilitation platform has been developed and evaluated technically, demonstrating the improvements on the efficiency without worsening the efficacy of the process. Besides, a usability evaluation has been carried out, with very good results. Regarding the data analysis module, an algorithm has been designed and developed to automatically select and configure rehabilitation sessions, taking into account the specific characteristics of each patient. This algorithm is called Intelligent Therapy Assistant (ITA). The obtained results show an improvement both in the efficiency and the efficacy of the process, comparing the results obtained by patients when they receive treatments scheduled manually by therapists. Finally, an eye-tracking device has been integrated in the tele-rehabilitation platform, carrying out a study with patients and control subjects demonstrating the technical viability of the developed monitoring environment. First results also show that there are differences between the visual attention patterns between ABI patients and control subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retrieval of wind fields from scatterometer observations has traditionally been separated into two phases; local wind vector retrieval and ambiguity removal. Operationally, a forward model relating wind vector to backscatter is inverted, typically using look up tables, to retrieve up to four local wind vector solutions. A heuristic procedure, using numerical weather prediction forecast wind vectors and, often, some neighbourhood comparison is then used to select the correct solution. In this paper we develop a Bayesian method for wind field retrieval, and show how a direct local inverse model, relating backscatter to wind vector, improves the wind vector retrieval accuracy. We compare these results with the operational U.K. Meteorological Office retrievals, our own CMOD4 retrievals and a neural network based local forward model retrieval. We suggest that the neural network based inverse model, which is extremely fast to use, improves upon current forward models when used in a variational data assimilation scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper I describe research activities in the field of optical fiber sensing undertaken by me after leaving the Applied Optics Group at the University of Kent. The main topics covered are long period gratings, neural network based signal processing, plasmonic sensors, and polymer fiber gratings. I also give a summary of my two periods of research at the University of Kent, covering 1985–1988 and 1991–2001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of sentences express sentiment in very different ways. Traditional sentence-level sentiment classification research focuses on one-technique-fits-all solution or only centers on one special type of sentences. In this paper, we propose a divide-and-conquer approach which first classifies sentences into different types, then performs sentiment analysis separately on sentences from each type. Specifically, we find that sentences tend to be more complex if they contain more sentiment targets. Thus, we propose to first apply a neural network based sequence model to classify opinionated sentences into three types according to the number of targets appeared in a sentence. Each group of sentences is then fed into a one-dimensional convolutional neural network separately for sentiment classification. Our approach has been evaluated on four sentiment classification datasets and compared with a wide range of baselines. Experimental results show that: (1) sentence type classification can improve the performance of sentence-level sentiment analysis; (2) the proposed approach achieves state-of-the-art results on several benchmarking datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective for this thesis work was the deployment of a Neural Network based approach for video object detection on board a nano-drone. Furthermore, we have studied some possible extensions to exploit the temporal nature of videos to improve the detection capabilities of our algorithm. For our project, we have utilized the Mobilenetv2/v3SSDLite due to their limited computational and memory requirements. We have trained our networks on the IMAGENET VID 2015 dataset and to deploy it onto the nano-drone we have used the NNtool and Autotiler tools by GreenWaves. To exploit the temporal nature of video data we have tried different approaches: the introduction of an LSTM based convolutional layer in our architecture, the introduction of a Kalman filter based tracker as a postprocessing step to augment the results of our base architecture. We have obtain a total improvement in our performances of about 2.5 mAP with the Kalman filter based method(BYTE). Our detector run on a microcontroller class processor on board the nano-drone at 1.63 fps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with neural network (NN)-based gait pattern adaptation algorithms for an active lower-limb orthosis. Stable trajectories with different walking speeds are generated during an optimization process considering the zero-moment point (ZMP) criterion and the inverse dynamic of the orthosis-patient model. Additionally, a set of NNs is used to decrease the time-consuming analytical computation of the model and ZMP. The first NN approximates the inverse dynamics including the ZMP computation, while the second NN works in the optimization procedure, giving an adapted desired trajectory according to orthosis-patient interaction. This trajectory adaptation is added directly to the trajectory generator, also reproduced by a set of NNs. With this strategy, it is possible to adapt the trajectory during the walking cycle in an on-line procedure, instead of changing the trajectory parameter after each step. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results. Also, an experimental test is performed with an active ankle-foot orthosis, where the dynamic variables of this joint are replaced in the simulator by actual values provided by the device. It is shown that the final adapted trajectory follows the patient intention of increasing the walking speed, so changing the gait pattern. (C) Koninklijke Brill NV, Leiden, 2011