876 resultados para Networked control systems
Resumo:
This paper introduces Periodically Controlled Hybrid Automata (PCHA) for describing a class of hybrid control systems. In a PCHA, control actions occur roughly periodically while internal and input actions may occur in the interim changing the discrete-state or the setpoint. Based on periodicity and subtangential conditions, a new sufficient condition for verifying invariance of PCHAs is presented. This technique is used in verifying safety of the planner-controller subsystem of an autonomous ground vehicle, and in deriving geometric properties of planner generated paths that can be followed safely by the controller under environmental uncertainties.
Resumo:
Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.
Resumo:
This paper presents an analysis of the slow-peaking phenomenon, a pitfall of low-gain designs that imposes basic limitations to large regions of attraction in nonlinear control systems. The phenomenon is best understood on a chain of integrators perturbed by a vector field up(x, u) that satisfies p(x, 0) = 0. Because small controls (or low-gain designs) are sufficient to stabilize the unperturbed chain of integrators, it may seem that smaller controls, which attenuate the perturbation up(x, u) in a large compact set, can be employed to achieve larger regions of attraction. This intuition is false, however, and peaking may cause a loss of global controllability unless severe growth restrictions are imposed on p(x, u). These growth restrictions are expressed as a higher order condition with respect to a particular weighted dilation related to the peaking exponents of the nominal system. When this higher order condition is satisfied, an explicit control law is derived that achieves global asymptotic stability of x = 0. This stabilization result is extended to more general cascade nonlinear systems in which the perturbation p(x, v) v, v = (ξ, u) T, contains the state ξ and the control u of a stabilizable subsystem ξ = a(ξ, u). As an illustration, a control law is derived that achieves global stabilization of the frictionless ball-and-beam model.
Resumo:
Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.
Resumo:
Processing networks are a variant of the standard linear programming network model which are especially useful for optimizing industrial energy/environment systems. Modelling advantages include an intuitive diagrammatic representation and the ability to incorporate all forms of energy and pollutants in a single integrated linear network model. Added advantages include increased speed of solution and algorithms supporting formulation. The paper explores their use in modelling the energy and pollution control systems in large industrial plants. The pollution control options in an ethylene production plant are analyzed as an example. PROFLOW, a computer tool for the formulation, analysis, and solution of processing network models, is introduced.
Resumo:
The properties of positively invariant sets are involved in many different problems in control theory, such as constrained control, robustness analysis, synthesis and optimization. In this paper we provide an overview of the literature concerning positively invariant sets and their application to the analysis and synthesis of control systems.
Resumo:
Alexander, Nicholas, Doherty, Anne Marie, 'Power and control in international retail franchising', European Journal of Marketing (2006) 40(11-12) pp.1292-1316 RAE2008
Resumo:
This is a user manual for your electronic assistive technology environmental control system trial pack or in simple words – a few bits of technology that can let you control some household appliances. This information is intended for you, your family and carers.
Resumo:
In this thesis, extensive experiments are firstly conducted to characterize the performance of using the emerging IEEE 802.15.4-2011 ultra wideband (UWB) for indoor localization, and the results demonstrate the accuracy and precision of using time of arrival measurements for ranging applications. A multipath propagation controlling technique is synthesized which considers the relationship between transmit power, transmission range and signal-to-noise ratio. The methodology includes a novel bilateral transmitter output power control algorithm which is demonstrated to be able to stabilize the multipath channel, and enable sub 5cm instant ranging accuracy in line of sight conditions. A fully-coupled architecture is proposed for the localization system using a combination of IEEE 802.15.4-2011 UWB and inertial sensors. This architecture not only implements the position estimation of the object by fusing the UWB and inertial measurements, but enables the nodes in the localization network to mutually share positional and other useful information via the UWB channel. The hybrid system has been demonstrated to be capable of simultaneous local-positioning and remote-tracking of the mobile object. Three fusion algorithms for relative position estimation are proposed, including internal navigation system (INS), INS with UWB ranging correction, and orientation plus ranging. Experimental results show that the INS with UWB correction algorithm achieves an average position accuracy of 0.1883m, and gets 83% and 62% improvements on the accuracy of the INS (1.0994m) and the existing extended Kalman filter tracking algorithm (0.5m), respectively.
Resumo:
Recently, a number of investigators have examined the neural loci of psychological processes enabling the control of visual spatial attention using cued-attention paradigms in combination with event-related functional magnetic resonance imaging. Findings from these studies have provided strong evidence for the involvement of a fronto-parietal network in attentional control. In the present study, we build upon this previous work to further investigate these attentional control systems. In particular, we employed additional controls for nonattentional sensory and interpretative aspects of cue processing to determine whether distinct regions in the fronto-parietal network are involved in different aspects of cue processing, such as cue-symbol interpretation and attentional orienting. In addition, we used shorter cue-target intervals that were closer to those used in the behavioral and event-related potential cueing literatures. Twenty participants performed a cued spatial attention task while brain activity was recorded with functional magnetic resonance imaging. We found functional specialization for different aspects of cue processing in the lateral and medial subregions of the frontal and parietal cortex. In particular, the medial subregions were more specific to the orienting of visual spatial attention, while the lateral subregions were associated with more general aspects of cue processing, such as cue-symbol interpretation. Additional cue-related effects included differential activations in midline frontal regions and pretarget enhancements in the thalamus and early visual cortical areas.
Resumo:
This paper describes a highly flexible component architecture, primarily designed for automotive control systems, that supports distributed dynamically- configurable context-aware behaviour. The architecture enforces a separation of design-time and run-time concerns, enabling almost all decisions concerning runtime composition and adaptation to be deferred beyond deployment. Dynamic context management contributes to flexibility. The architecture is extensible, and can embed potentially many different self-management decision technologies simultaneously. The mechanism that implements the run-time configuration has been designed to be very robust, automatically and silently handling problems arising from the evaluation of self- management logic and ensuring that in the worst case the dynamic aspects of the system collapse down to static behavior in totally predictable ways.
Resumo:
Purpose: The purpose of this paper is to investigate the mechanisms adopted by cities to control the provision of externalized public services and to explore the determinants of such control choices.
Design/methodology/approach: The paper presents the results of a multiple case study based on the experiences of three cities and three public services (transport, solid waste collection and home care services for the elderly), where control mechanisms and their possible antecedents were analyzed.
Findings: The results show that the control models found in the cases analyzed do not correspond to the "pure" patterns described in the private sector literature and that the factors identified by management control contributions do not seem to be exhaustive in explaining the configuration of control systems in the public sector. While environmental and task characteristics only partially explain the adoption of certain configurations of control, the features of the control systems seem to be rather influenced by variables that are related to party characteristics.
Originality/value: The paper shows that the combinations of control mechanisms are more multifaceted than those presented in the literature, and that the factors identified in the private sector literature do not seem to explain comprehensively the configuration of control systems in the public sector. © Emerald Group Publishing Limited.
Resumo:
Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed herein. Local control networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered the approach is the first of its kind to be used in marine control systems design. Simulation results are presented and the performance of the nonlinear autopilot is compared with that of an existing Springer linear quadratic Gaussian (LQG) autopilot using standard system performance criteria. From the results it can be concluded the LCN autopilot out performed that based on LQG techniques in terms of the selected criteria. Also it provided more energy saving control strategies and would thereby increase operational duration times for the vehicle during real-time missions.