488 resultados para Nerves.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the detailed documented case of a 57-year-old homosexual HIV-positive man with bilateral cochleovestibular deficits as a first symptom of syphilis infection in early stage II disease. As a morphological substrate, a strong enhancement of both inner ears and vestibulocochlear nerves were found on gadolinium-enhanced MR scans. The serological tests identified an active infection with Treponema pallidum. After a high-dose treatment with penicillin G and prednisolone, the auditory and vestibular functions and the MR morphology of the vestibulocochlear nerves and inner ears on both sides returned to normal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormal expression of heat shock proteins (HSPs) has been observed in many human neoplasms and such expression has prognostic, predictive and therapeutic implications. The aim of this study was to evaluate immunohistochemically the expression of HSP 27, HSP 32 and HSP 90 in normal canine peripheral nerves and in four benign and 15 malignant canine peripheral nerve sheath tumours (PNSTs). In normal nerve, all of the HSPs were detected in axons, epineurial fibroblasts and scattered Schwann cell bodies. Cytoplasmic expression of HSP 27 was more widespread and intense in benign PNSTs compared with malignant PNSTs (P <0.05). Widespread and intense nuclear expression of HSP 32 was also associated with benign tumours (P <0.01), while high HSP 90 immunoreactivity was detected in all tumours, suggesting that HSP 90 might represent a new therapeutic target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repeated sub-threshold nociceptive electrical stimulation resulting in temporal summation of the limb nociceptive withdrawal reflex is a well-established non-invasive model to investigate the wind-up phenomenon in horses. Due to structural similarities of the trigeminal sensory nucleus to the dorsal horn of the spinal cord, temporal summation should be evoked by repeated transcutaneous electrical stimulation of trigeminal afferents. To evaluate this hypothesis repeated transcutaneous electrical stimulation was applied to the supraorbital and infraorbital nerves of 10 horses. Stimulation intensities varied between 0.5 and 1.3 times the trigemino-cervical reflex threshold defined for single stimulation. Evoked electromyographic activity of the orbicularis oculi, splenius and cleidomastoideus muscles was recorded and the signals analysed in the previously established epochs typical to the early and late component of the blink reflex and to the trigemino-cervical reflex. Behavioural reactions were evaluated with the aid of numerical rating scale. The nociceptive late component and the trigemino-cervical reflex were not elicited by sub-threshold intensity repeated transcutaneous electrical stimulation. Furthermore, the median reflex amplitude for the 10 horses showed a tendency to decline over the stimulation train so temporal summation of afferent trigeminal inputs could not be observed. Therefore, the modulation of trigeminal nociceptive processing attributable to repeated Aδ fibre stimulations seems to differ from spinal processing of similar inputs as it seems to have an inhibitory rather than facilitatory effect. Further evaluation is necessary to highlight the underlying mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE Neural invasion (NI) is a histopathologic feature of colon cancer that receives little consideration. Therefore, we conducted a morphologic and functional characterization of NI in colon cancer. EXPERIMENTAL DESIGN NI was investigated in 673 patients with colon cancer. Localization and severity of NI was determined and related to patient's prognosis and survival. The neuro-affinity of colon cancer cells (HT29, HCT-116, SW620, and DLD-1) was compared with pancreatic cancer (T3M4 and SU86.86) and rectal cancer cells (CMT-93) in the in vitro three-dimensional (3D)-neural-migration assay and analyzed via live-cell imaging. Immunoreactivity of the neuroplasticity marker GAP-43, and the neurotrophic-chemoattractant factors Artemin and nerve growth factor (NGF), was quantified in colon cancer and pancreatic cancer nerves. Dorsal root ganglia of newborn rats were exposed to supernatants of colon cancer, rectal cancer, and pancreatic cancer cells and neurite density was determined. RESULTS NI was detected in 210 of 673 patients (31.2%). Although increasing NI severity scores were associated with a significantly poorer survival, presence of NI was not an independent prognostic factor in colon cancer. In the 3D migration assay, colon cancer and rectal cancer cells showed much less neurite-targeted migration when compared with pancreatic cancer cells. Supernatants of pancreatic cancer and rectal cancer cells induced a much higher neurite density than those of colon cancer cells. Accordingly, NGF, Artemin, and GAP-43 were much more pronounced in nerves in pancreatic cancer than in colon cancer. CONCLUSION NI is not an independent prognostic factor in colon cancer. The lack of a considerable biologic affinity between colon cancer cells and neurons, the low expression profile of colonic nerves for chemoattractant molecules, and the absence of a major neuroplasticity in colon cancer may explain the low prevalence and impact of NI in colon cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to characterize the nociceptive withdrawal reflex (NWR) and to define the nociceptive threshold in 25 healthy, non-medicated experimental sheep in standing posture. Electrical stimulation of the dorsal lateral digital nerves of the right thoracic and the pelvic limb was performed and surface-electromyography (EMG) from the deltoid (all animals) and the femoral biceps (18 animals) or the peroneus tertius muscles (7 animals) was recorded. The behavioural reaction following each stimulation was scored on a scale from 0 (no reaction) to 5 (strong whole body reaction). A train-of-five 1 ms constant-current pulse was used and current intensity was stepwise increased until NWR threshold intensity was reached. The NWR threshold intensity (It) was defined as the minimal stimulus intensity able to evoke a reflex with a minimal Root-Mean-Square amplitude (RMSA) of 20 μV, a minimal duration of 10 ms and a minimal reaction score of 1 (slight muscle contraction of the stimulated limb) within the time window of 20 to 130 ms post-stimulation. Based on this value, further stimulations were performed below (0.9It) and above threshold (1.5It and 2It). The stimulus-response curve was described. Data are reported as medians and interquartile ranges. At the deltoid muscle It was 4.4 mA (2.9–5.7) with an RMSA of 62 μV (30–102). At the biceps femoris muscle It was 7.0 mA (4.0–10.0) with an RMSA of 43 μV (34–50) and at the peroneus tertius muscle It was 3.4 mA (3.1–4.4) with an RMSA of 38 μV (32–46). Above threshold, RMSA was significantly increased at all muscles. Below threshold, RMSA was only significantly smaller than at It for the peroneus tertius muscle but not for the other muscles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2(-/-) retinas. Moreover, myelin ensheathment in the optic nerves of Eomes(-/-) embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (off-cell) spike activity, excitation of type I(e) (on-cell) spike activity, decreased spike activity in type III(i) inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type I(i) interneurons and pairs of type I(e) interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between I(e) and I(i) interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of I(e) and pairs of I(i) interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of I(e) and I(i) interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in I(e) and I(i) interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anti-glycan antibodies directed against gangliosides are now considered the major immune effectors that induce damage to intact nerve fibers in some variants of the monophasic neuropathic disorders that comprise Guillain-Barré syndrome. Recent experimental studies elucidating the complexity of anti-glycan antibody-mediated pathobiologic effects on intact and injured nerves undergoing repair are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphogenesis is the process by which the 3-dimensional structure of the developing embryo takes shape. We are studying xlcaax-1, a gene whose product can be used as a molecular marker for several morphogenetic events. We report here the cellular and subcellular localization of the xlcaax-1 protein during development of Xenopus laevis. Whole mount immunocytochemistry and immunoperoxidase staining of tissue sections showed that during development the xlcaax-1 protein accumulation was coincident with the differentiation of the epidermis, pronephros and mesonephros. In the pronephros and mesonephros the xlcaax-1 protein was localized to the basolateral membrane of differentiated tubule epithelial cells. Thus, the xlcaax-1 protein served as a marker for tubule formation and polarization during Xenopus kidney development. Xlcaax-1 may also be used as a marker for the functional differentiation of the epidermis and the epidermally derived portions of the lens and some cranial nerves. The xlcaax-1 protein was most abundant in kidney and immunogold EM analysis showed that the xlcaax-1 protein was highly enriched in the basal infoldings of the basolateral membrane of the epithelial cells in adult kidney distal tubules. The xlcaax-1 protein was also localized in other ion transporting epithelia. The localization pattern and preliminary functional assays of xlcaax-1 suggest that the protein may function in association with an ion transport channel or pump.^ Cell migration and cell-cell interactions play important roles in numerous processes during morphogenesis. One of these is the formation of the pronephric (wolffian) duct (PD), which connects the pronephros to the cloaca. It is currently accepted that in most amphibians the pronephric duct is formed by active migration of the pronephric duct rudiment (PDR) cells along a pre-determined pathway. However, there is evidence that in Xenopus, the PD may be formed entirely by in situ segregation of cells out of the lateral mesoderm. In this study, we showed, using PDR ablation and X. laevis - X. borealis chimeras, that PD elongation in Xenopus required both active cell migration and an induced recruitment of cells from the posterior lateral plate mesoderm. We also showed that PDR cell migration was limited to only a few stages during development and that this temporal control is due, at least in part, to changes in the competence of the PD pathway to support cell migration. In addition, our data suggested that an alkaline phosphatase (APase) adhesion gradient may be involved in determining this competence. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term sensitization in Aplysia is a well studied model for the examination of the cellular and molecules mechanisms of long-term memory. Several lines of evidence suggest long-term sensitization is mediated at least partially by long-term synaptic facilitation between the sensory and motor neurons. The sensitization training and one of its analogues, serotonin (5-HT), can induce long-term facilitation. In this study, another analogue to long-term sensitization training has been developed. Stimulation of peripheral nerves of pleural-pedal ganglia preparation induced long-term facilitation at both 24 hr and 48 hr. This is the first report that long-term facilitation in Aplysia persists for more than 24 hr, which is consistent with the observation that long-term sensitization lasts for more than one day. Thus, the data support the hypothesis that long-term facilitation is an important mechanism for long-term sensitization.^ One of the major differences between short-term and long-term facilitation is that long-term facilitation requires protein synthesis. Therefore, the effects of anisomycin, a protein synthesis inhibitor, on long-term facilitation was examined. Long-term facilitation induced by nerve stimulation was inhibited by 2 $\mu$M anisomycin, which inhibits $\sim$90% of protein synthesis. Nevertheless, at higher concentration (20 $\mu$M), anisomycin induced long-term facilitation by itself, which raises an interesting question about the function of anisomycin other than protein synthesis inhibition.^ Since protein synthesis is critical for long-term facilitation, a major goal is to identify and functionally characterize the molecules whose mRNA levels are altered during the formation of long-term facilitation. Behavioral training or its analogues (nerve stimulation and 5-HT) increases the level of mRNA of calmodulin (CaM). Thus, the role of Ca$\sp{2+}$-CaM-dependent protein kinase II (CaMKII), a major substrate of CaM, in long-term facilitation induced by nerve stimulation was examined. KN-62, a specific CaMKII inhibitor, did not block either the induction or the maintenance of long-term facilitation induced by nerve stimulation. These data indicate that CaMKII may not be involved in long-term facilitation. Another protein whose mRNA level of a molecule was increased by the behavioral training and the treatment of 5-HT is Aplysia tolloid/BMP-1-like protein 1 (apTBL-1). Tolloid in Drosophila and BMP-1 in human tissues are believed to be secreted as a metalloprotease to activate TGF-$\beta.$ Thus, the long-term effects of recombinant human TGF-$\beta1$ on synaptic strength were examined. Treatment of ganglia with TGF-$\beta1$ produced long-term facilitation, but not short-term or intermediate-term facilitation ($\le$4 hr). In addition, TGF-$\beta1$ and 5-HT were not additive in producing long-term facilitation, which indicates an interaction between two cascades. Moreover, 5-HT-induced facilitation (at both 24 hr and 48 hr) and nerve stimulation-induced facilitation (at 24 hr) were inhibited by TGF-$\beta$ sRII, a TGF-$\beta$ inhibitor. These results suggest that TGF-$\beta$ is part of the cascade of events underlying long-term sensitization, and also indicate that a signaling molecule used in development may also have functions in adult neuronal plasticity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low back pain is a common ailment in dogs, particularly in specific breeds such as the German shepherd dog. A number of structures such as facet joint capsules, ligaments, dorsal root ganglia, periosteum, vertebral endplates and meninges have been associated with this condition. Yet, in spite of all diagnostic efforts, the origin of pain remains obscure in a substantial proportion of all cases. A further structure often being involved in vertebral column disorders is the intervertebral disc. The presence of nerves, however, is a precondition for pain sensation and, consequently, structures lacking innervation can be left out of consideration as a cause for low back pain. Nerve fibres have been demonstrated at the periphery of the intervertebral disc in man, rabbit and rat. With regard to the dog, however, the extent of intervertebral disc innervation is still being disputed. The goal of the present study, therefore, was to substantiate and expand current knowledge of intervertebral disc innervation. Protein gene product (PGP) 9.5 was used for immunohistochemical examination of serial transversal and sagittal paraffin sections of lumbar discs from adult dogs. This general marker revealed nerve fibres to be confined to the periphery of the intervertebral discs. These results indicate that even limited pathological processes affecting the outer layers of the intervertebral disc are prone to cause low back pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE To develop and evaluate a method for ultrasound-guidance in performing the proximal paravertebral block for flank anaesthesia in cattle through a cadaveric study, followed by clinical application. STUDY DESIGN prospective experimental cadaveric study and clinical series. ANIMALS Previously frozen lumbar sections of cows without known spinal abnormalities were used. The clinical case group comprised of ten animals for which a right flank laparotomy was indicated. METHODS Twenty cow cadavers were used to perform ultrasound-guided bilateral injections of 1.0 mL dye (1.0 mL 1% Toluidine Blue in 1% Borax) at the intervertebral foramen at the level of T13, L1 and L2 spinal nerves. Distance and depth of injection, staining of the dorsal and ventral nerve branches, and deviation from the target were evaluated. The investigator's confidence as to visualisation and expected success at staining the nerve was assessed. Ten clinical cases received the ultrasound-guided proximal paravertebral anaesthesia. Analgesic success was evaluated using a 4-grade scoring system at 10 minutes after the injection and during surgery, respectively. Categorical variables were described using frequencies and proportions. RESULTS Both dorsal and ventral branches of the spinal nerves T13, L1 or L2 were at least partially stained in 41% of injections, while in 77% of injections one of the branches was stained. Five out of ten clinical cases had a satisfactory anaesthesia. There was no significant association between confidence at injection and either staining or analgesic success. CONCLUSION Results from the cadaveric and clinical study suggest no significant improvement using ultrasound guidance to perform proximal paravertebral block in cows compared to our previous clinical experience and to references in the literature using the blind method. CLINICAL RELEVANCE Further research should be conducted to improve the ultrasound-guided technique described in this study.