819 resultados para Nature study.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoacoustic/thermoacoustic imaging is an emerging hybrid imaging modality combining optical/microwave imaging with ultrasound imaging. The photoacoustic/thermoacoustic signal generated are affected by the nature of excitation pulse waveform, pulse width, target object size, transducer size etc. In this study k-wave was used to simulate various configurations of excitation pulse, transducer types, and target object sizes and to see their effect on the photoacoustic/thermoacoustic signals. Numerical blood vessel phantom was also used to see the effect of various pulse waveform and excitation pulse width on the reconstructed images. This study will help in optimizing transducer design and reconstruction methods to obtain the superior reconstructed image.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present computer simulation study of two-dimensional infrared spectroscopy (2D-IR) of water confined in reverse micelles (RMs) of various sizes. The present study is motivated by the need to understand the altered dynamics of confined water by performing layerwise decomposition of water, with an aim to quantify the relative contributions of different layers water molecules to the calculated 2D-IR spectrum. The 0-1 transition spectra clearly show substantial elongation, due to in-homogeneous broadening and incomplete spectral diffusion, along the diagonal in the surface water layer of different sized RMs. Fitting of the frequency fluctuation correlation functions reveal that the motion of the surface water molecules is sub-diffusive and indicate the constrained nature of their dynamics. This is further supported by two peak nature of the angular analogue of van Hove correlation function. With increasing system size, the water molecules become more diffusive in nature and spectral diffusion almost completes in the central layer of the larger size RMs. Comparisons between experiments and simulations establish the correspondence between the spectral decomposition available in experiments with the spatial decomposition available in simulations. Simulations also allow a quantitative exploration of the relative role of water, sodium ions, and sulfonate head groups in vibrational dephasing. Interestingly, the negative cross correlation between force on oxygen and hydrogen of O-H bond in bulk water significantly decreases in the surface layer of each RM. This negative cross correlation gradually increases in the central water pool with increasing RMs size and this is found to be partly responsible for the faster relaxation rate of water in the central pool. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cascading energy landscapes through funneling has been postulated as a mechanistic route for achieving the lowest energy configuration of a macromolecular system (such as proteins and polymers). In particular, understanding the molecular mechanism for the melting and crystallization of polymers is a challenging fundamental question. The structural modifications that lead to the melting of poly(ethylene glycol) (PEG) are investigated here. Specific Raman bands corresponding to different configurations of the PEG chain have been identified, and the molecular structural dynamics of PEG melting have been addressed using a combination of Raman spectroscopy, 2D Raman correlation and density functional theory (DFT) calculations. The melting dynamics of PEG have been unambiguously explained along the C-O bond rotation coordinate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystals of voriconazole, an antifungal drug, are soft in nature, and this is disadvantageous during compaction studies where pressure is applied on the solid. Crystal engineering is used to make cocrystals and salts with modified mechanical properties (e.g., hardness). Cocrystals with biologically safe coformers such as fumaric acid, 4-hydroxybenzoic acid, and 4-aminobenzoic acid and salts with hydrochloric acid and oxalic acid are prepared through solvent assisted grinding. The presence (salt) or absence (cocrystal) of proton transfer in these multicomponent crystals is unambiguously confirmed with single crystal X-ray diffraction. All the cocrystals have 1:1 stoichiometry, whereas salts exhibit variable stoichiometries such as HCl salt (1:2) and oxalate salts (1:1.5 and 1:1). The nanoindentation technique was applied on single crystals of the salts and cocrystals. The salts exhibit better hardness than the drug and cocrystals in the order salts drug cocrystals. The molecular origin of this mechanical modulation is explained on the basis of slip planes in the crystal structure and relative orientations of the molecules with respect to the nanoindentation direction. The hydrochloride salt is the hardest solid in this family. This may be useful for tableting of the drug during formulation and in drug development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the expanding field of nanoengineering and the production of nanocrystals (NCs) with higher quality and tunable size, having reliable theoretical calculations to complement the experimental results is very important. Here we present such a study of CdSe/CdS core-shell NCs using density functional theory, where we focus on dependence of the properties of these NCs on core types and interfaces between the core and the shell, as well as on the core/shell ratio. We show that the density of states and the absorption indices depend rather weakly on the type of interface and core type. We demonstrate that the HOMO wavefunction is mainly localised in the core of the nanocrystal, depending primarily on the core/shell ratio. On the other hand the LUMO wavefunction spreads more into the shell of the nanocrystal, where its confinement in the core is almost the same in each of the studied structural models. Furthermore, we show that the radiative lifetimes decrease with increasing core sizes due to changes in the dipolar overlap integral of the HOMO and LUMO wavefunctions. In addition, the electron-hole Coulomb interaction energies follow a similar pattern as the localisation of the wavefunctions, with the smaller NCs having higher Coulomb interaction energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA mu jewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of dendrimers, the poly(propyl ether imine) (PETIM) dendrimer, has been shown to be a novel hyperbranched polymer having potential applications as a drug delivery vehicle. Structure and dynamics of the amine terminated PETIM dendrimer and their changes with respect to the dendrimer generation are poorly understood. Since most drugs are hydrophobic in nature, the extent of hydrophobicity of the dendrimer core is related to its drug encapsulation and retention efficacy. In this study, we carry out fully atomistic molecular dynamics (MD) simulations to characterize the structure of PETIM (G2-G6) dendrimers in salt solution as a function of dendrimer generation at different protonation levels. Structural properties such as radius of gyration (R-g), radial density distribution, aspect ratio, and asphericity are calculated. In order to assess the hydrophilicity of the dendrimer, we compute the number of bound water molecules in the interior of dendrirner as well as the number of dendrimer-water hydrogen bonds. We conclude that PETIM dendrimers have relatively greater hydrophobicity and flexibility when compared with their extensively investigated PAMAM counterparts. Hence PETIM dendrimers are expected to have stronger interactions with lipid membranes as well as improved drug encapsulation and retention properties when compared with PAMAM dendrimers. We compute the root-mean-square fluctuation of dendrimers as well as their entropy to quantify the flexibility of the dendrimer. Finally we note that structural and solvation properties computed using force field parameters derived based on the CHARMM general purpose force field were in good quantitative agreement with those obtained using the generalized Amber force field (GAFF).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H center dot center dot center dot OC type between the hydroxyethylammonium cation and the picrate.C-13 and H-1 NMR spectroscopic analysis are also presented for the DMSO-d(6) solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we report the effect of Te deposition onto As2Se3 film which affects the optical properties. The Te/As2Se3 film was illuminated with 532 nm laser to study the photo induced diffusion. The prepared As2Se3, Te/As2Se3 films were characterized by X-ray diffraction which show a completely amorphous nature. On the basis of optical transmission data carried out by Fourier Transform infrared Spectroscopy, a non direct transition was found for these films. The optical bandgap is found to be decreased with Te deposition and photo darkening phenomena is observed for the diffused film. The change in the optical constants are also supported by the corresponding change in different types of bonds which are being analyzed by X-ray photoelectron spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex nature of the structural disorder in the lead-free ferroelectric Na1/2Bi1/2TiO3 has a profound impact on the perceived global structure and polar properties. In this paper, we have investigated the effect of electric field and temperature on the local structure around theBi and Ti atoms using extended x-ray absorption fine structure. Detailed analysis revealed that poling brings about a noticeable change in the bond distances associated with the Bi-coordination sphere, whereas the Ti coordination remains unaffected. We also observed discontinuity in the Bi-O bond lengths across the depolarization temperature of the poled specimen. These results establish that the disappearance of the monoclinic-like (Cc) global distortion, along with the drastic suppression of the short-ranged in-phase octahedral tilt after poling B. N. Rao et al., Phys. Rev. B 88, 224103 (2013)] is a result of the readjustment of theA-O bonds by the electric field, so as to be in conformity with the rhombohedral R3c structure.