381 resultados para NPS
Resumo:
Introduction. The term New Psychoactive Substances (NPS) encompasses a broad category of drugs which have become available on the market in recent years and whose illicit use for recreational purposes has recently exploded. The analysis of NPS usually requires mass spectrometry based techniques. The aim of our study was to define the preva-lence of NPS consumption in patients with a history of drug addiction followed by Public Services for Pathological Addictions, with the purpose of highlighting the effective presence of NPS within the area of Bologna and evaluating their association with classical drugs of abuse (DOA). Materials and methods. Sustained by literature, a multi-analyte UHPLC-MS/MS method for the identification of 127 NPS (phenethylamines, arylcyclohexylamines, synthetic opioids, tryptamines, synthetic cannabinoids, synthetic cathinones, designer benzodiazepines) and 15 classic drugs of abuse (DOA) in hair samples was developed and validated according to International Guidelines [112]. Samples pretreatment consisted of washing steps and overnight incubation at 45°C in an acid mixture of methanol and water. After cooling, supernatant were injected into the chromatographic system coupled with a tandem mass spectrometry detector. Results. Successful validation was achieved for almost all of the compounds. The method met all the required technical parameters. LOQ was set from 4 to 80 pg/mg The developed method was applied to 107 cases (85 males and 22 females) of clinical interest. Out of 85 hair samples resulting positive to classical drugs of abuse, NPS were found in twelve (8 male and 4 female). Conclusion. The present methodology represents an easy, low cost, wide-panel method for the de-tection of 127 NPS and 15 DOA in hair samples. Such multi-analyte methods facilitates the study of the prevalence of drugs abused that will enable the competent control authorities to obtain evi-dence-based reports regarding the critical spread of the threat represented by NPS.
Resumo:
Proteins, the most essential biological macromolecules, are involved in nearly every aspect of life. The elucidation of their three-dimensional structures through X-ray analysis has significantly contributed to our understanding of fundamental mechanisms in life processes. However, the obstacle of obtaining high-resolution protein crystals remains significant. Thus, searching for materials that can effectively induce nucleation of crystals is a promising and active field. This thesis work characterizes and prepares albumin nanoparticles as heterogeneous nucleants for protein crystallization. These stable Bovine Serum Albumin nanoparticles were synthesized via the desolvation method, purified efficiently, and characterized in terms of dimension, morphology, and secondary structure. The ability of BSA-NPs to induce macromolecule nucleation was tested on three model proteins, exhibiting significant results, with larger NPs inducing more nucleation. The second part of this work focuses on the structural study, mainly through X-ray crystallography, of five chloroplast and cytosolic enzymes involved in the fundamental cellular processes of two photosynthetic organisms, Chlamydomonas reinhardtii and Arabidopsis thaliana. The structures of three enzymes involved in the Calvin-Benson-Bassham Cycle, phosphoribulokinase, troseposphatisomerase, and ribulosiophosphate epimerase from Chlamydomonas reinhardtii, were solved to investigate their catalytic and regulatory mechanisms. Additionally, the structure of nitrosylated-CrTPI made it possible to identify Cys14 as a target for nitrosylation, and the crystallographic structure of CrRPE was solved for the first time, providing insights into its catalytic and regulatory properties. Finally, the structure of S-nitrosoglutathione reductase, AtGSNOR, was compared with that of AtADH1, revealing differences in their catalytic sites. Overall, seven crystallographic structures, including partially oxidized CrPRK, CrPRK/ATP, CrPRK/ADP/Ru5P, CrTPI-nitrosylated, apo-CrRPE, apo-AtGSNOR, and AtADH1-NADH, were solved and are yet to be deposited in the PDB.
Resumo:
Pollution of water bodies is one of the most common environmental problems today. Organic pollutants are one of the main drawbacks in this natural resource, among which the following stand out long-lived dyes, pharmaceuticals, and pesticides. This research aims at obtaining nanocomposites based on polycaprolactone-chitosan (PCL-CS) electrospun nanofibers (NFs) containing TiO2 nanoparticles (NPs) for the adsorption and photocatalytic degradation of organic pollutants, using Rhodamine B as a model. The fabricated hybrid materials were characterized by FT-IR, TGA, DSC, SEM, TEM, tensile properties, and the contact angle of water drops. The photoactivity of the NFs was investigated using a batch-type system by following UV-Vis absorbance and fluorescence of rhodamine B (RhB). For this purpose, TiO2NPs were successfully ex-situ incorporated into the polymer matrix promoting good mechanical properties and higher hydrophilicity of the material. The results showed that CS in the NFs increased the absorption and degradation of RhB by the TiO2NPs. CS attracted the pollutant molecules to the active sites vicinity of TiO2NPs, favoring initial adsorption and degradation. In other words, a bait-hook-and-destroy effect was evidenced. It also was demonstrated that the sensitization of TiO2 by organic dyes (e.g., perylene derivative) considerably improves the photocatalytic activity under visible radiation, allowing the use of low amounts of TiO2. (≈0.05 g/1 g of fiber). Hence, the current study is expected to contribute with an environmentally friendly green alternative solution.
Resumo:
Introduction. Synthetic cannabinoid receptor agonists (SCRAs) represent the widest group of New Psychoactive Substances (NPS) and, around 2021-2022, new compounds emerged on the market. The aims of the present research were to identify suitable urinary markers of Cumyl-CB-MEGACLONE, Cumyl-NB-MEGACLONE, Cumyl-NB-MINACA, 5F-EDMB-PICA, EDMB-PINACA and ADB-HEXINACA, to present data on their prevalence and to adapt the methodology from the University of Freiburg to the University of Bologna. Materials and methods. Human phase-I metabolites detected in 46 authentic urine samples were confirmed in vitro with pooled human liver microsomes (pHLM) assays, analyzed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qToF-MS). Prevalence data were obtained from urines collected for abstinence control programs. The method to study SCRAs metabolism in use at the University of Freiburg was adapted to the local facilities, tested in vitro with 5F-EDMB-PICA and applied to the study of ADB-HEXINACA metabolism. Results. Metabolites built by mono, di- and tri-hydroxylation were recommended as specific urinary biomarkers to monitor the consumption of SCRAs bearing a cumyl moiety. Monohydroxylated and defluorinated metabolites were suitable proof of 5F-EDMB-PICA consumption. Products of monohydroxylation and amide or ester hydrolysis, coupled to monohydroxylation or ketone formation, were recognized as specific markers for EDMB-PINACA and ADB-HEXINACA. The LC-qToF-MS method was successfully adapted to the University of Bologna, as tested with 5F-EDMB-PICA in vitro metabolites. Prevalence data showed that 5F-EDMB-PINACA and EDMB-PINACA were more prevalent than ADB-HEXINACA, but for a limited period. Conclusion. Due to undetectability of parent compounds in urines and to shared metabolites among structurally related compounds, the identification of specific urinary biomarkers as unequivocal proofs of SCRAs consumption remains challenging for forensic laboratories. Urinary biomarkers are necessary to monitor SCRAs abuse and prevalence data could help in establishing tailored strategies to prevent their spreading, highlighting the role for legal medicine as a service to public health.
Resumo:
L’oggetto di questo elaborato è lo studio computazionale, a livello della teoria del funzionale della densità (DFT) e della sua formulazione dipendente dal tempo (TD-DFT), dei dimeri della molecola di rodamina-B, parallelo allo sviluppo di una procedura di tuning ottimale del funzionale CAM-B3LYP. Questa molecola, che assume notevole rilevanza nei sistemi light harvesting grazie alle sue proprietà fotochimiche di emissione nel visibile, è impiegata nella sintesi di nanoparticelle (NPs) fluorescenti in ambito di diagnostica medica e bio-imaging, che sfruttano il fenomeno di trasferimento di energia per risonanza (FRET). Per via della notevole importanza che questa molecola riveste nell’ambito della fotochimica, essa è stata oggetto di esperimenti del gruppo di ricerca del laboratorio di biofotonica e farmacologia “Nanochemistry and Bioimaging”, che collabora con il gruppo di chimica computazionale dell’area chimico/fisica del Dipartimento. La dimerizzazione della rodamina all’interno delle NPs può innescare canali di self-quenching che abbassano la resa quantica di fluorescenza, pregiudicando l’efficienza dei dispositivi: l’obiettivo dello studio è la caratterizzazione dei dimeri, in solventi e con controioni diversi, impiegando dei modelli molecolari, per identificarne le specie più stabili e descrivere la fotofisica degli stati elettronici eccitati. Il carattere generalmente charge-transfer (CT) di questi stati elettronici richiede un “tuning ottimale” della metodologia computazionale DFT/TD-DFT per una descrizione quantitativa accurata.
Resumo:
Negli ultimi decenni la necessità di salvaguardare l’ambiente ha portato ad un importante sviluppo dei processi catalitici con particolare attenzione agli aspetti di sostenibilità e impatto ambientale. Le nanoparticelle metalliche, note per le ottime proprietà catalitiche, ricoprono un ruolo fondamentale nel settore della catalisi. Al fine di innescare effetti sinergici e ottenere catalizzatori più performanti, la ricerca si sta orientando verso lo studio di nanoparticelle bimetalliche o multicomponente. Questo lavoro di tesi presenta la sintesi di nanoparticelle di Au, Pt e AuPt applicabili in catalisi e preparate mediante un processo a basso impatto ambientale assistito da microonde. Un’estesa caratterizzazione chimicofisica dei prodotti (DLS/ELS, UV-VIS, ICP-OES, XRD; TEM-EDS) ha consentito di ottimizzare le sintesi rispetto a distribuzione granulometrica, stabilità colloidale, resa di reazione e composizione di fase. Per AuPt NPs si sono sviluppate due preparazioni finalizzate all’ottenimento di diverse nanostrutture, core-shell e leghe. Infine, le prestazioni catalitiche dei campioni preparati sono state valutate mediante idrogenazione di 4-nitrofenolo (4-NP) a 4-amminofenolo (4-AP) in presenza di NaBH4, una reazione modello utilizzata per testare l'attività catalitica di nanometalli. Il campione in lega, Au97.5Pt2.5, e il campione core-shell, Au90@Pt10, hanno evidenziato effetti sinergici positivi con una migliore attività catalitica rispetto ai monometalli.