908 resultados para NERVE BLOCK
Resumo:
Poly(ethylene glycol)-block-poly(butyl acrylate) synthesized by radical polymerization in a one-step procedure were characterized by gel permeation chromatography, infrared, IH-NMR spectroscopy, and differential scanning calorimetry (DSC). The crystalline property, emulsifying property, and phase transfer catalytic effect in the Williamson reaction were studied. It was found that the crystallinity of the copolymer increased with an increase in both the content and molecular weight of poly( ethylene oxide) (PEO) sequences. DSC curves showed two distinct crystallization temperature due to the heterogeneous nucleation and homogeneous nucleation crystallization. The casting solvent significantly affected the morphology and crystallinity of the solvent cast films. Both the emulsifying volume and the phase transfer catalytic efficiency in the Williamson reaction increased with the amount and PEO content of the block copolymers used, but decreased with an increase in the molecular weight of PEO sequences. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Prepolymers of poly(ethylene oxide) (Pre-PEG) were synthesized by reacting azoisobutyronitrile (AIBN) with poly(ethylene glycol) (PEG), and their structures were characterized by IR and UV. The molecular weight of pre-PEG was related to the feed ratio and reaction time. These prepolymers can be used to prepare block copolymers - poly(ethylene oxide)-block-poly(butyl acrylate) (PEO-b-PBA) by radical polymerization in the presence of butyl acrylate (BA). Solution polymerization was a suitable technique for this step. The yield and the molecular weight of the product were related to the ratio of the prepolymer to BA, the reaction time, and temperature. GPC showed that the molecular weight increased with a higher ratio of BA to pre-PEO. The intrinsic viscosity of the copolymers was only slightly dependent on reaction time, but decreased at higher reaction temperatures, as did the amount of PEA homopolymer. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The microphase transition in a styrene-butadiene-styrene triblock copolymer was studied by rheometric mechanical spectroscopy. A high-temperature-melt rheological transition from the highly elastic, nonlinear viscous behavior typical of a multiphase structure to linear viscous behavior with insignificant elasticity typical of a single-phase structure was observed. The transition temperature is determined according to the discontinuity of the rheological properties across the transition region, which agrees well with the results obtained from the small angle X-ray scattering data and the expectation of the random phase approximation theory. Maybe for the first time, microphase dissolution was investigated theologically. The storage modulus (G') and the loss modulus (G '') increase with time during the process. An entanglement fluctuation model based on the segmental density fluctuations is presented to explain the rheological behavior in this dissolution process. (C) 1997 John Wiley & Sons.
Resumo:
The crystallization and melting behaviours of a multiblock copolymer comprising poly(ether ether ketone) (PEEK) and poly(ether sulfone) (PES) blocks whose number average molecular weights <((M)over bar (n)'s)> were 10 000 and 2900, respectively, were studied. The effect of thermal history on crystallization was investigated by wide-angle X-ray diffraction measurement. A differential scanning calorimeter was used to detect the thermal transitions and to monitor the energy evolved during the isothermal crystallization process from the melt. The results suggest that the crystallization of the copolymer becomes more difficult as compared with that of pure PEEK. The equilibrium melting point of the copolymer was found to be 357 degrees C, about 30 degrees C lower than that of pure PEEK. During the isothermal crystallization, relative crystallinity increased with crystallization time, following an Avrami equation with exponent n approximate to 2. The fold surface free energy for the copolymer crystallized from the melt was calculated to be 73 erg cm(-2), about 24 erg cm(-2) higher than that of pure PEEK. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Phase behavior of blends of poly(vinyl methyl ether) (PVME) with four styrene-butadienestyrene (SBS) triblock copolymers, being of various molecular weights, architecture, and compositions, was investigated by small-angle light scattering. Small-angle X-ray scattering investigation was accomplished for one blend. Low critical solution temperature (LCST) and a unique phase behavior, resembling upper critical solution temperature (UCST), were observed. It was found that the architecture of the copolymer greatly influenced the phase behavior of the blends. Random phase approximation theory was used to calculate the spinodal phase transition curves of the ABA/C and BAB/C systems; LCST and resembling UCST phase behavior were observed as the parameters of the system changed. Qualitatively, the experimental and the theoretical results are consistent with each other. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Block copolymers of poly(ethersulphone) (PES) oligomers with liquid crystalline polyester units were synthesized by the reaction of dihydroxy-terminated poly(ether sulphone) oligomers (number-average molecular weights: 704, 1,158 and 2570) and terephthaloyl bis(4-oxybenzoyl chloride), and their properties were investigated. The results indicated that the copolymer with PES segments of molecular weight of 704 possessed birefringent features when annealed at 360 degrees C, while the copolymer with PES segments of molecular weight of 2,570 became isotropic. Also, the block copolymers had a better chemical resistance and high-temperature stability than PES.
Resumo:
An azo-group containing polybutadiene macroinitiator was prepared by Pinner synthesis and characterized by IR, NMR, GPC, viscosity and elemental measurements. The macroinitiator was further use to polymerize acrylamide (AAm) in benzene to form polybutadiene/polyacrylamide (PBD/PAAm) block copolymers. High conversion of AAm was obtained over a wide range of monomer/macroinitiator ratios. The PBD/PAAm block copolymers were found to have excellent solvent resistance.
Resumo:
The anti-aging performance of blends of polystyrene (PS), styrene-butadiene triblock copolymers (SBS), and PS/styrene-butadiene (SB)-4A (Carm star SE block copolymer) has been studied by means of C-13 NMR techniques. It is found that the anti-aging performance of these kinds of blends largely depends on their miscibility with PS of different molecular weight M(PS). The larger the quantities of PS solubilized in polybutadiene (PBD) domains, the better the anti-aging performance of the blends. It is also found that the anti-aging performance of these blends has dependence on molecular architectures of the SE block copolymers. For the aged blends, the double bonds of PBD were broken, meanwhile serious cross-linking networks formed in the blends. The proposed anti-aging mechanism is that the PS solubilized in PBD domains can efficiently prevent oxygen molecules from diffusing into PBD domains, therefore, successfully stop the oxidative process of PBD.
Resumo:
Miscibility in blends of three styrene-butadiene-styrene and one styrene-isoprene-styrene triblock copolymers containing 28%, 30%, 48%, and 14% by weight of polystyrene, respectively, with poly(vinyl methyl ether) (PVME) were investigated by FTIR spectroscopy and differential scanning calorimetry (DSC). It was found from the optical clarity and the glass transition temperature behavior that the blends show miscibility for each kind of triblock copolymers below a certain concentration of PVME. The concentration range to show miscibility becomes wider as the polystyrene content and molecular weight of PS segment in the triblock copolymers increase. From the FTIR results, the relative peak intensity of the 1100 cm-1 region due to COCH3 band of PVME and peak position of 698 cm-1 region due to phenyl ring are sensitive to the miscibility of SBS(SIS)/PVME blends. The results show that the miscibility in SBS(SIS)/PVME blends is greatly affected by the composition of the copolymers and the polystyrene content in the triblock copolymers. Molecular weights of polystyrene segments have also affected the miscibility of the blends. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The miscibilities of blends of homopolystyrene/styrene-butadiene/styrene (PS/SBS) and PS/SB-4A (4-arm star block copolymer) have been studied by dynamic mechanical analysis (DMA) and C-13 CPMAS NMR techniques. The results indicate that the miscibilities o
Resumo:
The microstructures of styrene-butadiene triblock (SBS) and styrene-butadiene four-arm star block (SB-4A) copolymers and their blends with homopolystyrene (PS) of different molecular weights, MPS, have been investigated by means of small-angle X-ray scatt
Resumo:
The proton spin-spin relaxation times (T-2(H)) at different temperatures (from 160 to 390 K) have been determined for polystyrene (PS) and four-arm star styrene-butadiene block copolymer (SB-4A) and its blends with PS of different molecular weights (M(PS)
Resumo:
The interface thickness in two triblock copolymers were determined using small-angle x-ray scattering in the context of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at three different temperatures. By viewing th
Resumo:
A surface fractal model was presented to describe the interface in block copolymers. It gives a simple power-law relationship between the scattering intensity I(q) and the wave vector q in a relatively wide range as qxi >> 1, I(q) is-proportional-to q(D-6