967 resultados para Myocardial afterload
Resumo:
Ascending aorta coarctation was produced by a minimally invasive technique in rabbits. Animal mortality was 5%. Morphometric and hemodynamic parameters were evaluated. A parabiotically isolated heart model was used to assess the hemodynamic parameters. Left ventricular weight/body weight ratio and muscle area showed clear evidence of hypertrophy when compared to control. The hemodynamic changes in the isolated heart model suggested decreased diastolic and systolic function in the coarcted group. The present model produced hypertrophy with low mortality rates as a result of its less invasive nature.
Resumo:
To compare the sensitivity of dipyridamole, dobutamine and pacing stress echocardiography for the detection of myocardial ischemia we produced a physiologically significant stenosis in the left circumflex artery of 14 open-chest dogs (range: 50 to 89% reduction in luminal diameter). In each study, dobutamine (5 to 40 µg kg-1 min-1 in 3-min stages) and pacing (20 bpm increments, each 2 min, up to 260 bpm) were performed randomly, and then followed by dipyridamole (up to 0.84 mg/kg over 10 min). The positivity of stress echocardiography tests was quantitatively determined by a significant (P<0.05) reduction of or failure to increase absolute and percent systolic wall thickening in the stenotic artery supplied wall, as compared to the opposite wall (areas related to the left anterior descending artery). Systolic and diastolic frozen images were analyzed off-line by two blinded observers in the control and stress conditions. The results showed that 1) the sensitivity of dobutamine, dipyridamole and pacing stress tests was 57, 57 and 36%, respectively; 2) in animals with positive tests, the mean percent change of wall thickening in left ventricular ischemic segments was larger in the pacing (-19 ± 11%) and dipyridamole (-18 ± 16%) tests as compared to dobutamine (-9 ± 6%) (P = 0.05), but a similar mean reduction of wall thickening was observed when this variable was normalized to a control left ventricular segment (area related to the left anterior descending artery) (pacing: -16 ± 7%; dipyridamole: -25 ± 16%; dobutamine: -26 ± 10%; not significant), and 3) a significant correlation was observed between magnitude of coronary stenosis and left ventricular segmental dysfunction induced by ischemia in dogs submitted to positive stress tests. We conclude that the dobutamine and dipyridamole stress tests showed identical sensitivities for the detection of myocardial ischemia in this one-vessel disease animal model with a wide range of left circumflex artery stenosis. The pacing stress test was less sensitive, but the difference was not statistically significant. The magnitude of segmental left ventricular dysfunction induced by ischemia was similar in all stress tests evaluated.
Resumo:
The purpose of the present study was to examine myocardial antioxidant and oxidative stress changes in male and female rats in the presence of physiological sex hormone concentrations and after castration. Twenty-four 9-week-old Wistar rats were divided into four groups of 6 animals each: 1) sham-operated females, 2) castrated females, 3) sham-operated males, and 4) castrated males. When testosterone and estrogen levels were measured by radioimmunoassay, significant differences were observed between the castrated and control groups (both males and females), demonstrating the success of castration. Progesterone and catalase levels did not change in any group. Control male rats had higher levels of glutathione peroxidase (50%) and lower levels of superoxide dismutase (SOD, 14%) than females. Control females presented increased levels of SOD as compared to the other groups. After castration, SOD activity decreased by 29% in the female group and by 14% in the male group as compared to their respective controls. Lipid peroxidation (LPO) was assessed to evaluate oxidative damage to cardiac membranes by two different methods, i.e., TBARS and chemiluminescence. LPO was higher in male controls compared to female controls when evaluated by both methods, TBARS (360%) and chemiluminescence (46%). Castration induced a 200% increase in myocardial damage in females as determined by TBARS and a 20% increase as determined by chemiluminescence. In males, castration did not change LPO levels. These data suggest that estrogen may have an antioxidant role in heart muscle, while testosterone does not.
Resumo:
Metabolic studies using the in vitro non-recirculating blood-perfused isolated heart model require large volumes of blood. The present study was designed to determine whether heterologous pig blood collected from a slaughterhouse can be used as perfusate for isolated pig hearts perfused under aerobic and constant reduced flow conditions. Eight isolated working pig hearts perfused for 90 min at a constant flow of 1.5 ml g-1 min-1 with non-recirculated blood diluted with Krebs-Henseleit bicarbonate buffer at a hematocrit of 23% were compared to eight hearts subjected to the same protocol but perfused only with Krebs-Henseleit bicarbonate buffer solution. Hearts were paced at 100 bpm and subjected to aerobic perfusion at 38ºC. Hearts were weighed before perfusion and at the end of the experiment and the results are reported as percent weight gain (mean ± SD). Comparisons between groups were performed by the Student t-test (P<0.05). After 90 min of perfusion with modified Krebs-Henseleit, perfused hearts presented a larger weight gain than blood-perfused hearts (39.34 ± 9.27 vs 23.13 ± 5.42%, P = 0.003). Left ventricular end-diastolic pressure was higher in the modified Krebs-Henseleit-perfused group than in the blood group (2.8 ± 0.4 vs 2.3 ± 0.3 mmHg, respectively, P = 0.01). We conclude that heterologous blood perfusion, by preserving a more physiological myocardial water content, is a better perfusion fluid than modified Krebs-Henseleit solution for quantitative studies of myocardial metabolism and heart function under ischemic conditions.
Resumo:
It is recognized that an imbalance of the autonomic nervous system is involved in the genesis of ventricular arrhythmia and sudden death during myocardial ischemia. In the present study we investigated the effects of clonidine and rilmenidine, two centrally acting sympathomodulatory drugs, on an experimental model of centrally induced sympathetic hyperactivity in pentobarbital-anesthetized New Zealand albino rabbits of either sex (2-3 kg, N = 89). We also compared the effects of clonidine and rilmenidine with those of propranolol, a ß-blocker, known to induce protective cardiovascular effects in patients with ischemic heart disease. Central sympathetic stimulation was achieved by intracerebroventricular injection of the excitatory amino acid L-glutamate (10 µmol), associated with inhibition of nitric oxide synthesis with L-NAME (40 mg/kg, iv). Glutamate triggered ventricular arrhythmia and persistent ST-segment shifts in the ECG, indicating myocardial ischemia. The intracisternal administration of clonidine (1 µg/kg) and rilmenidine (30 µg/kg) or of a nonhypotensive dose of rilmenidine (3 µg/kg) decreased the incidence of myocardial ischemia (25, 14 and 25%, respectively, versus 60% in controls) and reduced the mortality rate from 40% to 0.0, 0.0 and 12%, respectively. The total number of ventricular premature beats per minute fell from 30 ± 9 in the control group to 7 ± 3, 6 ± 3 and 2 ± 2, respectively. Intravenous administration of clonidine (10 µg/kg), rilmenidine (300 µg/kg) or propranolol (500 µg/kg) elicited similar protective effects. We conclude that clonidine and rilmenidine present cardioprotective effects of central origin, which can be reproduced by propranolol, a lipophilic ß-blocking agent.
Resumo:
Differentiation between stunned and infarcted myocardium in the setting of acute ischemia is challenging. Real time myocardial contrast echocardiography allows the simultaneous assessment of myocardial perfusion and function. In the present study we evaluated infarcted and stunned myocardium in an experimental model using real time myocardial contrast echocardiography. Sixteen dogs underwent 180 min of coronary occlusion followed by reperfusion (infarct model) and seven other dogs were submitted to 20 min of coronary occlusion followed by reperfusion (stunned model). Wall motion abnormality and perfusional myocardial defect areas were measured by planimetry. Risk and infarct areas were determined by tissue staining. In the infarct model, the wall motion abnormality area during coronary occlusion (5.52 ± 1.14 cm²) was larger than the perfusional myocardial defect area (3.71 ± 1.45 cm²; P < 0.001). Reperfusion resulted in maintenance of wall motion abnormality (5.45 ± 1.41 cm²; P = 0.43 versus occlusion) and reduction of perfusional myocardial defect (1.51 ± 1.29 cm²; P = 0.004 versus occlusion). Infarct size determined by contrast echocardiography correlated with tissue staining (r = 0.71; P = 0.002). In the stunned model, the wall motion abnormality area was 5.49 ± 0.68 cm² during occlusion and remained 5.1 ± 0.63 cm² after reperfusion (P = 0.07). Perfusional defect area was 2.43 ± 0.79 cm² during occlusion and was reduced to 0.2 ± 0.53 cm² after reperfusion (P = 0.04). 2,3,5-Triphenyl tetrazolium chloride staining confirmed the absence of necrotic myocardium in all dogs in the stunned model. Real time myocardial contrast echocardiography is a noninvasive technique capable of distinguishing between stunned and infarcted myocardium after acute ischemia.
Resumo:
The present study focused on the role of sympathetic renal nerve activity, in mediating congestive heart failure-induced sodium retention following experimental chronic myocardial infarction. Groups of male Wistar rats (240-260 g) were studied: sham-operated coronary ligation (CON3W, N = 11), coronary ligation and sham-operated renal denervation (INF3W, N = 19), 3 weeks of coronary ligation and sympathetic renal nerve denervation (INF3WDX, N = 6), sham-operated coronary ligation (N = 7), and 16 weeks of coronary ligation (INF16W, N = 7). An acute experimental protocol was used in which the volume overload (VO; 5% of body weight) was applied for 30 min after the equilibration period of continuous iv infusion of saline. Compared to control levels, VO produced an increase (P < 0.01, ANOVA) in urine flow rate (UFR; 570%) and urinary sodium excretion (USE; 1117%) in CON3W. VO induced a smaller increase (P < 0.01) in USE (684%) in INF3W. A similar response was also observed in INF16W. In INF3WDX, VO produced an immediate and large increase (P < 0.01) in UFR (547%) and USE (1211%). Similarly, in INF3W VO increased (P < 0.01) UFR (394%) and USE (894%). Compared with INF3W, VO induced a higher (P < 0.01) USE in INF3WDX, whose values were similar to those for CON3W. These results suggest that renal sympathetic activity may be involved in sodium retention induced by congestive heart failure. This premise is supported by the observation that in bilaterally renal denervated INF3WDX rats myocardial infarction was unable to reduce volume expansion-induced natriuresis. However, the mechanism involved in urinary volume regulation seems to be insensitive to the factors that alter natriuresis.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
Hemodynamic care during postoperative management of myocardial revascularization should include vasorelaxing drugs to insure adequate graft and coronary flow, and stimulation of stroke volume to maintain vascular perfusion pressure. We tested the cardiac (inotropic and lusitropic) and vascular (relaxant) effects of diltiazem (0.1 nM to 0.1 mM), dobutamine (10 µM to 10 mM) and amrinone (10 µM to 1 mM) on isolated rat atria and thoracic aorta, and also on isolated human saphenous vein (HSV) and human mammary artery (HMA). Dobutamine produced a maximal positive inotropic effect (+dF/dt max = 29 ± 7%) at its ED50 for aortic relaxation (88 ± 7 µM). Conversely, at their ED50 for aortic relaxation diltiazem depressed myocardial contractility and amrinone did not exhibit myocardial effects. In HSV and HMA contracted with 80 mM potassium, diltiazem and dobutamine (but not amrinone) had a vasorelaxant activity similar to that in rat aorta. Norepinephrine-contracted human vessels were significantly more sensitive than potassium-contracted vessels to the relaxant effect of amrinone (ED50 HMA = 15 ± 5 µM, ED50 HSV = 72 ± 31 µM, P < 0.05). We conclude that at concentrations still devoid of myocardial effects dobutamine and amrinone are effective dilators in graft segment vessels and rat aorta contracted by membrane depolarization. If the difference between aortic and myocardial tissue still holds in human tissues, at the appropriate concentrations these drugs should be expected to improve cardiac performance while still contributing to the maintenance of graft patency.
Resumo:
Several indexes of myocardial contractility have been proposed to assess ventricular function in the isovolumetrically beating isolated heart. However, the conclusions reached on the basis of these indexes may be influenced by ventricular geometry rather than contractility itself. The objective of the present study was to assess the performance of widely used contractility indexes in the isovolumetrically beating isolated heart in two experimental models of hypertrophy, the spontaneously hypertensive rat (SHR) and infrarenal aortocava fistula. Compared to normotensive controls (N = 8), SHRs with concentric hypertrophy (N = 10) presented increased maximum rate of ventricular pressure rise (3875 ± 526 vs 2555 ± 359 mmHg/s, P < 0.05) and peak of isovolumetric pressure (187 ± 11 vs 152 ± 11 mmHg, P < 0.05), and decreased developed stress (123 ± 20 vs 152 ± 26 g/cm², P < 0.05) and slope of stress-strain relationship (4.9 ± 0.42 vs 6.6 ± 0.77 g/cm²/%). Compared with controls (N = 11), rats with volume overload-induced eccentric hypertrophy (N = 16) presented increased developed stress (157 ± 38 vs 124 ± 22 g/cm², P < 0.05) and slope of stress-strain relationship (9 ± 2 vs 7 ± 1 g/cm²/%, P < 0.05), and decreased maximum rate of ventricular pressure rise(2746 ± 382 vs 3319 ± 352 mmHg, P < 0.05) and peak of isovolumetric pressure (115 ± 14 vs 165 ± 13 mmHg/s, P < 0.05). The results suggested that indexes of myocardial contractility used in experimental studies may present opposite results in the same heart and may be influenced by ventricular geometry. We concluded that several indexes should be taken into account for proper evaluation of contractile state, in the isovolumetrically beating isolated heart.
Resumo:
An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.
A routine electrocardiogram cannot be used to determine the size of myocardial infarction in the rat
Resumo:
Nine lead electrocardiograms of non-infarcted (N = 61) and infarcted (N = 71) female Wistar rats (200-250 g) were analyzed in order to distinguish left ventricle myocardial infarction (MI) larger than 40% (LMI) from MI smaller than 40% (SMI). MI larger than 40% clearly caused a deviation of ÂQRS and ÂT from normal values of 270-360 degrees to 90-270 degrees. Infarcted rats showed Q wave in D1 larger than 1 mm with 94% sensitivity and 100% specificity. The sum of QRS positivity in V1, V2 and V6 lower than 10 mm identified MI with 82% sensitivity and 100% specificity. The data showed that MI can be easily and reliably diagnosed by electrocardiogram in the rat. However, contradicting what is frequently believed, when specificity and sensitivity were analyzed focusing on MI size, none of these current electrocardiographic indices of MI size adequately discriminates LMI from SMI.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ß-adrenergic stimulation with 1.0 µM isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 ± 5 vs 158 ± 5, P < 0.0005) and low catalase (7 ± 1 vs 9 ± 1, P < 0.005) and superoxide-dismutase (18 ± 2 vs 27 ± 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.
Resumo:
Myocardial contrast echocardiography has been used for assessing myocardial perfusion. Some concerns regarding its safety still remain, mainly regarding the induction of microvascular alterations. We sought to determine the bioeffects of microbubbles and real-time myocardial contrast echocardiography (RTMCE) in a closed-chest canine model. Eighteen mongrel dogs were randomly assigned to two groups. Nine were submitted to continuous intravenous infusion of perfluorocarbon-exposed sonicated dextrose albumin (PESDA) plus continuous imaging using power pulse inversion RTMCE for 180 min, associated with manually deflagrated high-mechanical index impulses. The control group consisted of 3 dogs submitted to continuous imaging using RTMCE without PESDA, 3 dogs received PESDA alone, and 3 dogs were sham-operated. Hemodynamics and cardiac rhythm were monitored continuously. Histological analysis was performed on cardiac and pulmonary tissues. No hemodynamic changes or cardiac arrhythmias were observed in any group. Normal left ventricular ejection fraction and myocardial perfusion were maintained throughout the protocol. Frequency of mild and focal microhemorrhage areas in myocardial and pulmonary tissue was similar in PESDA plus RTMCE and control groups. The percentages of positive microscopical fields in the myocardium were 0.4 and 0.7% (P = NS) in the PESDA plus RTMCE and control groups, respectively, and in the lungs they were 2.1 and 1.1%, respectively (P = NS). In this canine model, myocardial perfusion imaging obtained with PESDA and RTMCE was safe, with no alteration in cardiac rhythm or left ventricular function. Mild and focal myocardial and pulmonary microhemorrhages were observed in both groups, and may be attributed to surgical tissue manipulation.