978 resultados para Muscle vibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nature has evolved a beautiful design for small-scale vibratory rategyro in the form of dipteran halteres that detect body rotations via Coriolis acceleration. In most Diptera, including soldier fly, Hermetia illucens, halteres are a pair of special organs, located in the space between the thorax and the abdomen. The halteres along with their connecting joint with the fly's body constitute a mechanism that is used for muscle-actuated oscillations of the halteres along the actuation direction. These oscillations lead to bending vibrations in the sensing direction (out of the haltere's actuation plane) upon any impressed rotation due to the resulting Coriolis force. This induced vibration is sensed by the sensory organs at the base of the haltere in order to determine the rate of rotation. In this study, we evaluate the boundary conditions and the stiffness of the anesthetized halteres along the actuation and the sensing direction. We take several cross-sectional SEM (scanning electron microscope) images of the soldier fly haltere and construct its three dimensional model to get the mass properties. Based on these measurements, we estimate the natural frequency along both actuation and sensing directions, propose a finite element model of the haltere's joint mechanism, and discuss the significance of the haltere's asymmetric cross-section. The estimated natural frequency along the actuation direction is within the range of the haltere's flapping frequency. However, the natural frequency along the sensing direction is roughly double the haltere's flapping frequency that provides a large bandwidth for sensing the rate of rotation to the soldier flies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of two curved beam finite element models based on coupled polynomial displacement fields is investigated for out-of-plane vibration of arches. These two-noded beam models employ curvilinear strain definitions and have three degrees of freedom per node namely, out-of-plane translation (v), out-of-plane bending rotation (theta(z)) and torsion rotation (theta(s)). The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the force-moment equilibrium equations. Numerical performance of these elements for constrained and unconstrained arches is compared with the conventional curved beam models which are based on independent polynomial fields. The formulation is shown to be free from any spurious constraints in the limit of `flexureless torsion' and `torsionless flexure' and hence devoid of flexure and torsion locking. The resulting stiffness and consistent mass matrices generated from the coupled displacement models show excellent convergence of natural frequencies in locking regimes. The accuracy of the shear flexibility added to the elements is also demonstrated. The coupled polynomial models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By analyzing and comparing the experimental data, the point source moment theory and the cavity theory, it is concluded that the vibrating signals away from the blasting explosive come mainly from the natural vibrations of the geological structures near the broken blasting area. The source impulses are not spread mainly by the inelastic properties (such as through media damping, as believed to be the case by many researchers) of the medium in the propagation pass, but by this structure. Then an equivalent source model for the blasting vibrations of a fragmenting blasting is proposed, which shows the important role of the impulse of the source's time function under certain conditions. For the purpose of numerical simulation, the model is realized in FEM, The finite element results are in good agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship is determined between saturated duration of rectangular pressure pulses applied to rigid, perfectly plastic structures and their fundamental periods of elastic vibration. It is shown that the ratio between the saturated duration and the fundamental period of elastic vibration of a structure is dependent upon two factors: the first one is the slenderness or thinness ratio of the structure; and the second one is the square root of ratio between the Young's elastic modulus and the yield stress of the structural material. Dimensional analysis shows that the aforementioned ratio is one of the basic similarity parameters for elastic-plastic modeling under dynamic loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the effects of both natural convection and forced flows on solid–liquid interface morphology during upward Bridgman solidification of metallic alloys. Experiments were carried out on Al–3.5wt% Ni alloy, for a cylindrical sample. The influence of natural convection induced by radial thermal gradient on solidified microstructure was first analyzed as a function of the pulling rate. Then, the influence of axial vibration on solidification microstructure was experimentally investigated by varying vibration parameters (frequency and amplitude). Experimental results demonstrated that vibrations could be used to either attenuate fluid flow in the melt and obtain a uniform dendritic pattern or to promote a fragmented dendritic microstructure. However, no marked effect was observed for cellular growth. This pointed out the critical role of the mushy zone in the interaction between fluid flow and solidification microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction. The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibration analysis of an adhered S-shaped microbeam under alternating sinusoidal voltage is presented. The shaking force is the electrical force due to the sinusoidal voltage. During vibration, both the microbeam deflection and the adhesion length keep changing. The microbeam deflection and adhesion length are numerically determined by the iteration method. As the adhesion length keeps changing, the domain of the equation of motion for the microbeam (unadhered part) changes correspondingly, which results in changes of the structure natural frequencies. For this reason, the system can never reach a steady state. The transient behaviors of the microbeam under different shaking frequencies are compared. We deliberately choose the initial conditions to compare our dynamic results with the existing static theory. The paper also analyzes the changing behavior of adhesion length during vibration and an asymmetric pattern of adhesion length change is revealed, which may be used to guide the dynamic de-adhering process. The abnormal behavior of the adhered microbeam vibrating at almost the same frequency under two quite different shaking frequencies is also shown. The Galerkin method is used to discretize the equation of motion and its convergence study is also presented. The model is only applicable in the case that the peel number is equal to 1. Some other model limitations are also discussed.