958 resultados para Murine macrophages
Resumo:
Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.
Resumo:
A kinetic study of the cells present in the spleen of BALB/c mice infected with Schistosoma mansoni was carried out. The lymphocytes were evaluated phenotypically with monoclonal antibodies and the effect of splenectomy on the modulation of periovular granuloma was also investigated. The infected mice had proportional increases in the numbers of neutophils, plasma cells, macrophages and eosinophils in the spleen. The largest number of neutrophil, plasma cells and macrophage were found between the 8th and the 12th week of infection, while the amount of eosinophils were higher later on, around the 20th week. The lymphocytes phenotipically characterized as Thy 1.2, Lyt 1.2 (CD4) increased mildly in proportional numbers. However, the percentage of lymphocytes with the Lyt 2.2 (CD8) phenotype, which is characteristic of supressor and cytotoxic T cells, increased significantly with the progress of the disease. The numbers of B lymphocytes, which comprise 50% of the mononuclear cells present in the spleen, increased significantly till the 16th week they began to decrease. The mean diameters of periovular granulomas were comparatively similar in both experimental groups (splenectomized and non-splenectomized mice). However, the evolutive types of granuloma (exudative, intermediate and fibrous) in splenectomized mice were proprtionally different from those of non splenectomized mice in the 16th and 24th week of infection. It is inferred that lymphonodes or other secondary lymphoide organs, in the abscence of the spleen, assume a modulating action on periovular granulomas, although the evolution of the granulomas is somehow delayed in splenectomized mice.
Resumo:
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Resumo:
Viral replication, histopathological and ultrastructural changes were observed for a period of nine days in the small intestine of suckling mice infected with a simian rotavirus (SA11). Samples taken from duodenum, jejunun and ileum were prepared for light microscopy, transmission and scanning electron microscopy analysis. Histopathologic effect could be detected within 8 hr post-infection, when only a few altered cells were observed. Damage was extensive after 16 hr post-infection, showing swollen enterocytes and reduced and irregularly oriented microvilli at intestinal villi tips. Virus particles were detected at 16 and 48 hr post-infection, budding from the viroplasm into the rough endoplasmic reticulum cisternae in ileum enterocytes. Clear evidence of viral replication, observed by electron microscopy was not described before in heterologous murine models. Regeneration of the intestinal villi began at the third day post-infection. Despite some differences observed in clinical symptoms and microscopic analysis of homologous and heterologous rotavirus infections, we concluded that mechanisms of heterologous rotavirus infection in mice follow similar patterns to those observed in the homologous models.
Resumo:
The class B scavenger receptor CD36 is a component of the pattern recognition receptors on monocytes that recognizes a variety of molecules. CD36 expression in monocytes depends on exposure to soluble mediators. We demonstrate here that CD36 expression is induced in human monocytes following exposure to IL-13, a Th2 cytokine, via the peroxisome proliferator-activated receptor (PPAR)gamma pathway. Induction of CD36 protein was paralleled by an increase in CD36 mRNA. The PPARgamma pathway was demonstrated using transfection of a PPARgamma expression plasmid into the murine macrophage cell line RAW264.7, expressing very low levels of PPARgamma, and in peritoneal macrophages from PPARgamma-conditional null mice. We also show that CD36 induction by IL-13 via PPARgamma is dependent on phospholipase A2 activation and that IL-13 induces the production of endogenous 15-deoxy-Delta12,14-prostaglandin J2, an endogenous PPARgamma ligand, and its nuclear localization in human monocytes. Finally, we demonstrate that CD36 and PPARgamma are involved in IL-13-mediated phagocytosis of Plasmodium falciparum-parasitized erythrocytes. These results reveal a novel role for PPARgamma in the alternative activation of monocytes by IL-13, suggesting that endogenous PPARgamma ligands, produced by phospholipase A2 activation, could contribute to the biochemical and cellular functions of CD36.
Resumo:
During Schistosoma mansoni infection, there is morphological evidence of involvement of various hematopoietic growth factors, which cause eosinophil, neutrophil, megakaryocytic and erythroid extramedullary foci in the liver, lymph nodes and omental and mesenteric milky spots. While the eosinophil metaplasia in the periphery of hepatic granulomas roughly reproduced the intensity of the medullary eosinopoiesis, the neutrophil metaplasia, on the contrary, was more intense during the period of neutrophil depression in the bone marrow. This fact suggests that extramedullary hematopoietic foci are locally regulated, and amplify and/or compensate the systemic hematopoietic response during the infection.
Resumo:
The hypothesis that granuloma modulation and disease abatement in chronic infection with Schistosoma japonicum could be ascribed to antibody-mediated effects on egg maturation and egg viability, arose from studies performed with mice in the Philippines. This novel hypothesis has not yet been integrated into the schistosomiasis literature despite being formulated more than a decade ago. One reason for this is that the phenomenon might be confined to S. japonicum, even S. japonicum (Philippines).
Resumo:
Tumor-associated macrophages (TAMs) invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma). AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an "M2" macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.
Resumo:
The protection elicited by the intramuscular injection of two plasmid DNAs encoding Leishmania major cysteine proteinase type I (CPb) and type II (CPa) was evaluated in a murine model of experimental cutaneous leishmaniasis. BALB/c mice were immunized either separately or with a cocktail of the two plasmids expressing CPa or CPb. It was only when the cpa and cpb genes were co-injected that long lasting protection against parasite challenge was achieved. Similar protection was also observed when animals were first immunized with cpa/cpb DNA followed by recombinant CPa/CPb boost. Analysis of the immune response showed that protected animals developed a specific Th1 immune response, which was associated with an increase of IFN-gamma production. This is the first report demonstrating that co-injection of two genes expressing different antigens induces a long lasting protective response, whereas the separate injection of cysteine proteases genes is not protective.
Resumo:
Rationale: Experimental autoimmune myocarditis (EAM) mirrors important pathogenic aspects of inflammatory cardiomyopathy, a common cause of heart failure. In EAM, TGF-β-dependent conversion of heart-infiltrating prominin-1+ progenitors into myofibroblasts is critical for development of fibrosis and the end-stage heart failure phenotype. Therapeutic strategies modulating the in vivo fate of prominin-1+ progenitors might therefore prevent TGF-β-mediated cardiac fibrosis and pathological remodelling. Methods and Results: EAM was induced in BALB/c mice using alpha-myosin heavy chain (aMyHC) peptide/complete Freund's adjuvant (CFA) immunization. Prominin-1+ cells were isolated from the inflamed hearts at day 21 after immunization, expanded and treated with Macrophage Colony-Stimulating Factor (M-CSF) or Transforming Growth Factor-beta (TGF-β). Herein, we demonstrated that M-CSF turns, ex vivo and in the EAM, heart-infiltrating prominin-1+ progenitors into immunosuppressive F4/80/CD11b/CD16/32/NOS2-expressing, nitric oxide producing and E.coli bacteria phygocyting macrophages, and protect further TGF-β-stimulated differentiation into pathogenic myofibroblasts. Systemic M-CSF treatment during myocarditis completely prevented post-inflammatory fibrosis, T cell relapse and left ventricular dysfunction. Mechanistically, M-CSF-induced macrophage differentiation from prominin-1+ progenitors critically required nitric oxide synthase 2. Accordingly, M-CSF treatment failed to reduce myocardial fibrosis development in Nos2-/- mice. Conclusions: Altering the in vivo fate of inflammatory prominin-1 expressing progenitors from pro-fibrotic into the F4/80 expressing macrophage phenotype protects from myocarditis progression, cardiac fibrosis, and heart failure. These findings offer a modern therapeutic model and challenge former concepts, which attributed macrophages a detrimental role in inflammatory cardiomyopathy progression.
Resumo:
An experimental model of murine chromoblastomycosis and in vitro tests with Fonsecaea pedrosoi were used to test the sensitivity of this fungus to three different antimycotics. The experimental model was standardized in BALB/c mice inoculated intraperitoneally with a 10(6) CFU/ml suspension of a F. pedrosoi isolate. Clinical infection was evident after 5 days of inoculation. Three groups of 27 mice each were used in the experiment. One group was treated with ketoconazole (KTZ), another with itraconazole (ITZ) and the other with saperconazole (SPZ). Antimycotic therapy was continued for 21 days. The control group consisted of 40 mice which were inoculated, but not treated. Infection was documented by macroscopic and microscopic examination of affected tissue in addition to culture of tissue macerates. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) for the F. pedrosoi strain used were done. The in vitro results showed that SPZ was the most active with MIC 0.01 mg/ml and MFC 0.1 mg/ml, followed by ITZ. SPZ was also the most effective in vivo since 63% of the treated animals (p=0.01) showed a curative effect after the observation period. We concluded that SPZ had the best in vitro and in vivo activity against F. pedrosoi.