982 resultados para Multiple infections
Resumo:
This paper presents a method to enable a mobile robot working in non-stationary environments to plan its path and localize within multiple map hypotheses simultaneously. The maps are generated using a long-term and short-term memory mechanism that ensures only persistent configurations in the environment are selected to create the maps. In order to evaluate the proposed method, experimentation is conducted in an office environment. Compared to navigation systems that use only one map, our system produces superior path planning and navigation in a non-stationary environment where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners.
Resumo:
Background Sexually-transmitted pathogens often have severe reproductive health implications if treatment is delayed or absent, especially in females. The complex processes of disease progression, namely replication and ascension of the infection through the genital tract, span both extracellular and intracellular physiological scales, and in females can vary over the distinct phases of the menstrual cycle. The complexity of these processes, coupled with the common impossibility of obtaining comprehensive and sequential clinical data from individual human patients, makes mathematical and computational modelling valuable tools in developing our understanding of the infection, with a view to identifying new interventions. While many within-host models of sexually-transmitted infections (STIs) are available in existing literature, these models are difficult to deploy in clinical/experimental settings since simulations often require complex computational approaches. Results We present STI-GMaS (Sexually-Transmitted Infections – Graphical Modelling and Simulation), an environment for simulation of STI models, with a view to stimulating the uptake of these models within the laboratory or clinic. The software currently focuses upon the representative case-study of Chlamydia trachomatis, the most common sexually-transmitted bacterial pathogen of humans. Here, we demonstrate the use of a hybrid PDE–cellular automata model for simulation of a hypothetical Chlamydia vaccination, demonstrating the effect of a vaccine-induced antibody in preventing the infection from ascending to above the cervix. This example illustrates the ease with which existing models can be adapted to describe new studies, and its careful parameterisation within STI-GMaS facilitates future tuning to experimental data as they arise. Conclusions STI-GMaS represents the first software designed explicitly for in-silico simulation of STI models by non-theoreticians, thus presenting a novel route to bridging the gap between computational and clinical/experimental disciplines. With the propensity for model reuse and extension, there is much scope within STI-GMaS to allow clinical and experimental studies to inform model inputs and drive future model development. Many of the modelling paradigms and software design principles deployed to date transfer readily to other STIs, both bacterial and viral; forthcoming releases of STI-GMaS will extend the software to incorporate a more diverse range of infections.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
This paper introduces a straightforward method to asymptotically solve a variety of initial and boundary value problems for singularly perturbed ordinary differential equations whose solution structure can be anticipated. The approach is simpler than conventional methods, including those based on asymptotic matching or on eliminating secular terms. © 2010 by the Massachusetts Institute of Technology.
Resumo:
NLS is a stream cipher which was submitted to the eSTREAM project. A linear distinguishing attack against NLS was presented by Cho and Pieprzyk, which was called Crossword Puzzle (CP) attack. NLSv2 is a tweak version of NLS which aims mainly at avoiding the CP attack. In this paper, a new distinguishing attack against NLSv2 is presented. The attack exploits high correlation amongst neighboring bits of the cipher. The paper first shows that the modular addition preserves pairwise correlations as demonstrated by existence of linear approximations with large biases. Next, it shows how to combine these results with the existence of high correlation between bits 29 and 30 of the S-box to obtain a distinguisher whose bias is around 2^−37. Consequently, we claim that NLSv2 is distinguishable from a random cipher after observing around 2^74 keystream words.
Resumo:
The value of information technology (IT) is often realized when continuously being used after users’ initial acceptance. However, previous research on continuing IT usage is limited for dismissing the importance of mental goals in directing users’ behaviors and for inadequately accommodating the group context of users. This in-progress paper offers a synthesis of several literature to conceptualize continuing IT usage as multilevel constructs and to view IT usage behavior as directed and energized by a set of mental goals. Drawing from the self-regulation theory in the social psychology, this paper proposes a process model, positioning continuing IT usage as multiple-goal pursuit. An agent-based modeling approach is suggested to further explore causal and analytical implications of the proposed process model.
Resumo:
The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.
Resumo:
Background. Interventions that prevent healthcare-associated infection should lead to fewer deaths and shorter hospital stays. Cleaning hands (with soap or alcohol) is an effective way to prevent the transmission of organisms, but rates of compliance with hand hygiene are sometimes disappointingly low. The National Hand Hygiene Initiative in Australia aimed to improve hand hygiene compliance among healthcare workers, with the goal of reducing rates of healthcare-associated infection. Methods. We examined whether the introduction of the National Hand Hygiene Initiative was associated with a change in infection rates. Monthly infection rates for healthcare-associated Staphylococcus aureus bloodstream infections were examined in 38 Australian hospitals across 6 states. We used Poisson regression and examined 12 possible patterns of change, with the best fitting pattern chosen using the Akaike information criterion. Monthly bed-days were included to control for increased hospital use over time. Results. The National Hand Hygiene Initiative was associated with a reduction in infection rates in 4 of the 6 states studied. Two states showed an immediate reduction in rates of 17% and 28%, 2 states showed a linear decrease in rates of 8% and 11% per year, and 2 showed no change in infection rates. Conclusions. The intervention was associated with reduced infection rates in most states. The failure in 2 states may have been because those states already had effective initiatives before the national initiative’s introduction or because infection rates were already low and could not be further reduced.
Resumo:
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
Resumo:
In his letter Cunha suggests that oral antibiotic therapy is safer and less expensive than intravenous therapy via central venous catheters (CVCs) (1). The implication is that costs will fall and increased health benefits will be enjoyed resulting in a gain in efficiency within the healthcare system. CVCs are often used in critically ill patients to deliver antimicrobial therapy, but expose patients to a risk of catheter-related bloodstream infection (CRBSI). Our current knowledge about the efficiency (i.e. costeffectiveness) of allocating resources toward interventions that prevent CRBSI in patients requiring a CVC has already been reviewed (2). If for some patient groups antimicrobial therapy can be delivered orally, instead of through a CVC, then the costs and benefits of this alternate strategy should be evaluated...
Resumo:
Background: The transmission of soil-transmitted helminths (STHs) is associated with poverty, poor hygiene behaviour, lack of clean water and inadequate waste disposal and sanitation. Periodic administration of benzimidazole drugs is the mainstay for global STH control but it does not prevent re-infection, and is unlikely to interrupt transmission as a stand-alone intervention. Findings: We reported recently on the development and successful testing in Hunan province, PR China, of a health education package to prevent STH infections in Han Chinese primary school students. We have recently commenced a new trial of the package in the ethnically diverse Xishuangbanna autonomous prefecture in Yunnan province and the approach is also being tested in West Africa, with further expansion into the Philippines in 2015. Conclusions: The work in China illustrates well the direct impact that health education can have in improving knowledge and awareness, and in changing hygiene behaviour. Further, it can provide insight into the public health outcomes of a multi-component integrated control program, where health education prevents re-infection and periodic drug treatment reduces prevalence and morbidity.
Resumo:
This paper presents a novel method to rank map hypotheses by the quality of localization they afford. The highest ranked hypothesis at any moment becomes the active representation that is used to guide the robot to its goal location. A single static representation is insufficient for navigation in dynamic environments where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners. In our approach we simultaneously rank multiple map hypotheses by the influence that localization in each of them has on locally accurate odometry. This is done online for the current locally accurate window by formulating a factor graph of odometry relaxed by localization constraints. Comparison of the resulting perturbed odometry of each hypothesis with the original odometry yields a score that can be used to rank map hypotheses by their utility. We deploy the proposed approach on a real robot navigating a structurally noisy office environment. The configuration of the environment is physically altered outside the robots sensory horizon during navigation tasks to demonstrate the proposed approach of hypothesis selection.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
Surgical site infections following caesarean section are a serious and costly adverse event for Australian hospitals. In the United Kingdom, 9% of women are diagnosed with a surgical site infection following caesarean section either in hospital or post-discharge (Wloch et al 2012, Ward et al 2008). Additional staff time, pharmaceuticals and health supplies, and increased length of stay or readmission to hospital are often required (Henman et al 2012). Part of my PhD investigated the economics of preventing post-caesarean infection. This paper summarises a review of relevant infection prevention strategies. Administering antibiotic prophylaxis 15 to 60 minutes pre-incision, rather than post cordclamping, is probably the most important infection prevention strategy for caesarean section (Smaill and Gyte2010, Liu et al 2013, Dahlke et al 2013). However the timing of antibiotic administration is reportedly inconsistent in Australian hospitals. Clinicians may be taking advice from the influential, but out-dated RANZCOG and United States Centers for Disease Control and Prevention guidelines (Royal Australian and New Zealand College of Obstetricians and Gynaecologists 2011, Mangram et al 1999). A number of other important international clinical guidelines, including Australia's NHMRC guidelines, recommend universal prophylactic antibiotics pre-incision for caesarean section (National Health and Medical Research Council 2010, National Collaborating Centre for Women's and Children's Health 2008, Anderson et al 2008, National Collaborating Centre for Women's and Children's Health 2011, Bratzler et al 2013, American College of Obstetricians and Gynecologists 2011a, Antibiotic Expert Group 2010). We need to ensure women receive preincision antibiotic prophylaxis, particularly as nurses and midwives play a significant role in managing an infection that may result from sub-optimal practice. It is acknowledged more explicitly now that nurses and midwives can influence prescribing and administration of antibiotics through informal approaches (Edwards et al 2011). Methods such as surgical safety checklists are a more formal way for nurses and midwives to ensure that antibiotics are administered pre-incision (American College of Obstetricians and Gynecologists 2011 b). Nurses and midwives can also be directly responsible for other infection prevention strategies such as instructing women to not remove pubic hair in the month before the expected date of delivery and wound management education (Ng et al 2013). Potentially more costly but effective strategies include using a Chlorhexidine-gluconate (CHG) sponge preoperatively (in addition to the usual operating room skin preparation) and vaginal cleansing with a povidone-iodine solution (Riley et al 2012, Rauk 2010, Haas, Morgan, and Contreras 2013).
Resumo:
This chapter describes decentralized data fusion algorithms for a team of multiple autonomous platforms. Decentralized data fusion (DDF) provides a useful basis with which to build upon for cooperative information gathering tasks for robotic teams operating in outdoor environments. Through the DDF algorithms, each platform can maintain a consistent global solution from which decisions may then be made. Comparisons will be made between the implementation of DDF using two probabilistic representations. The first, Gaussian estimates and the second Gaussian mixtures are compared using a common data set. The overall system design is detailed, providing insight into the overall complexity of implementing a robust DDF system for use in information gathering tasks in outdoor UAV applications.