873 resultados para Multi-scale modeling
Resumo:
The water stored in and flowing through the subsurface is fundamental for sustaining human activities and needs, feeding water and its constituents to surface water bodies and supporting the functioning of their ecosystems. Quantifying the changes that affect the subsurface water is crucial for our understanding of its dynamics and changes driven by climate change and other changes in the landscape, such as in land-use and water-use. It is inherently difficult to directly measure soil moisture and groundwater levels over large spatial scales and long times. Models are therefore needed to capture the soil moisture and groundwater level dynamics over such large spatiotemporal scales. This thesis develops a modeling framework that allows for long-term catchment-scale screening of soil moisture and groundwater level changes. The novelty in this development resides in an explicit link drawn between catchment-scale hydroclimatic and soil hydraulics conditions, using observed runoff data as an approximation of soil water flux and accounting for the effects of snow storage-melting dynamics on that flux. Both past and future relative changes can be assessed by use of this modeling framework, with future change projections based on common climate model outputs. By direct model-observation comparison, the thesis shows that the developed modeling framework can reproduce the temporal variability of large-scale changes in soil water storage, as obtained from the GRACE satellite product, for most of 25 large study catchments around the world. Also compared with locally measured soil water content and groundwater level in 10 U.S. catchments, the modeling approach can reasonably well reproduce relative seasonal fluctuations around long-term average values. The developed modeling framework is further used to project soil moisture changes due to expected future climate change for 81 catchments around the world. The future soil moisture changes depend on the considered radiative forcing scenario (RCP) but are overall large for the occurrence frequency of dry and wet events and the inter-annual variability of seasonal soil moisture. These changes tend to be higher for the dry events and the dry season, respectively, than for the corresponding wet quantities, indicating increased drought risk for some parts of the world.
Resumo:
The report of the proceedings of the New Delhi workshop on the SSF Guidelines (Voluntary Guidelines for Securing Sustainable Small-scale Fisheries in the Context of Food Security and Poverty Eradication). The workshop brought together 95 participants from 13 states representing civil society organizations. governments, FAO, and fishworker organizations from both the marine and inland fisheries sectors. This report will be found useful for fishworker organizations, researchers, policy makers, members of civil society and anyone interested in small-scale fisheries, tenure rights, social development, livelihoods, post harvest and trade and disasters and climate change.
Resumo:
This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.
Resumo:
Implementation of stable aeroelastic models with the ability to capture the complex features of Multi concept smartblades is a prime step in reducing the uncertainties that come along with blade dynamics. The numerical simulations of fluid structure interaction can thus be used to test a realistic scenarios comprising of full-scale blades at a reasonably low computational cost. A code which was a combination of two advanced numerical models was designed and was run with the help of paralell HPC supercomputer platform. The first model was based on a variation of dimensional reduction technique proposed by Hodges and Yu. This model was the one to record the structural response of heterogenous composite blades. This technique reduces the geometrical complexities of the heterogenous blade section into a stiffness matrix for an equivalent beam. This derived equivalent 1-D strain energy matrix is similar to the actual 3-D strain energy matrix in an asymptotic sense. As this 1-D matrix helps in accurately modeling the blade structure as a 1-D finite element problem, this substantially redues the computational effort and subsequently the computational cost that are required to model the structural dynamics at each step. Second model comprises of implementation of the Blade Element Momentum Theory. In this approach we map all the velocities and the forces with the help of orthogonal matrices that help in capturing the large deformations and the effects of rotations in calculating the aerodynamic forces. This ultimately helps us to take into account the complex flexo torsional deformations. In this thesis we have succesfully tested these computayinal tools developed by MTU’s research team lead by for the aero elastic analysis of wind-turbine blades. The validation in this thesis is majorly based on several experiments done on NREL-5MW blade, as this is widely accepted as a benchmark blade in the wind industry. Along with the use of this innovative model the internal blade structure was also changed to add up to the existing benefits of the already advanced numerical models.
Resumo:
Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.
Resumo:
The dissertation reports on two studies. The purpose of Study I was to develop and evaluate a measure of cognitive competence (the Critical Problem Solving Skills Scale – Qualitative Extension) using Relational Data Analysis (RDA) with a multi-ethnic, adolescent sample. My study builds on previous work that has been conducted to provide evidence for the reliability and validity of the RDA framework in evaluating youth development programs (Kurtines et al., 2008). Inter-coder percent agreement among the TOC and TCC coders for each of the category levels was moderate to high, with a range of .76 to .94. The Fleiss’ kappa across all category levels was from substantial agreement to almost perfect agreement, with a range of .72 to .91. The correlation between the TOC and the TCC demonstrated medium to high correlation, with a range of r(40)=.68, p Study II reports an investigation of a positive youth development program using an Outcome Mediation Cascade (OMC) evaluation model, an integrated model for evaluating the empirical intersection between intervention and developmental processes. The Changing Lives Program (CLP) is a community supported positive youth development intervention implemented in a practice setting as a selective/indicated program for multi-ethnic, multi-problem at risk youth in urban alternative high schools in the Miami Dade County Public Schools (M-DCPS). The 259 participants for this study were drawn from the CLP’s archival data file. The study used a structural equation modeling approach to construct and evaluate the hypothesized model. Findings indicated that the hypothesized model fit the data (χ2 (7) = 5.651, p = .83; RMSEA = .00; CFI = 1.00; WRMR = .319). My study built on previous research using the OMC evaluation model (Eichas, 2010), and the findings are consistent with the hypothesis that in addition to having effects on targeted positive outcomes, PYD interventions are likely to have progressive cascading effects on untargeted problem outcomes that operate through effects on positive outcomes.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.
Resumo:
Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of kappa approximate to 0.1-0.4 (0.16+/-0.06 arithmetic mean and standard deviation). The overall median value of kappa approximate to 0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (kappa approximate to 0.1 at D approximate to 50 nm; kappa approximate to 0.2 at D approximate to 200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (f(org)) was on average as high as similar to 90% in the Aitken mode (D <= 100 nm) and decreased with increasing particle diameter in the accumulation mode (similar to 80% at D approximate to 200 nm). The kappa values exhibited a negative linear correlation with f(org) (R(2)=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: kappa(org)approximate to 0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and kappa(inorg)approximate to 0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (kappa(p)=kappa(org) x f(org)+kappa(inorg) x f(inorg)). The CCN number concentrations predicted with kappa(p) were in fair agreement with the measurement results (similar to 20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from N(CCN,0.10)approximate to 35 cm(-3) to N(CCN,0.82)approximate to 160 cm(-3), the median concentration of aerosol particles larger than 30 nm was N(CN,30)approximate to 200 cm(-3), and the corresponding integral CCN efficiencies were in the range of N(CCN,0.10/NCN,30)approximate to 0.1 to N(CCN,0.82/NCN,30)approximate to 0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of N(CCN,S) assuming an approximate global average value of kappa approximate to 0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded similar to 50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (<= 100 cm(-3)). Model calculations assuming aconstant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: similar to 60% for the campaign average distribution and similar to 1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.
Resumo:
The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
Resumo:
The objective of this study was to estimate the first-order intrinsic kinetic constant (k(1)) and the liquid-phase mass transfer coefficient (k(c)) in a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) fed with glucose. A dynamic heterogeneous mathematical model, considering two phases (liquid and solid), was developed through mass balances in the liquid and solid phases. The model was adjusted to experimental data obtained from the ASBBR applied for the treatment of glucose-based synthetic wastewater with approximately 500 mg L-1 of glucose, operating in 8 h batch cycles, at 30 degrees C and 300 rpm. The values of the parameters obtained were 0.8911 min(-1) for k(1) and 0.7644 cm min(-1) for kc. The model was validated utilizing the estimated parameters with data obtained from the ASBBR operating in 3 h batch cycles, with a good representation of the experimental behavior. The solid-phase mass transfer flux was found to be the limiting step of the overall glucose conversion rate.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.