905 resultados para Multi-objective optimization problem
Resumo:
The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for penalty and smoothing methods for solving min-max convex semi-infinite programing problems, whose convergence was analyzed in a previous paper of three of the authors. In this paper we consider a partial implementation of RPSALG for solving ordinary convex semi-infinite programming problems. Each iteration of RPSALG involves two types of auxiliary optimization problems: the first one consists of obtaining an approximate solution of some discretized convex problem, while the second one requires to solve a non-convex optimization problem involving the parametric constraints as objective function with the parameter as variable. In this paper we tackle the latter problem with a variant of the cutting angle method called ECAM, a global optimization procedure for solving Lipschitz programming problems. We implement different variants of RPSALG which are compared with the unique publicly available SIP solver, NSIPS, on a battery of test problems.
Resumo:
Given a convex optimization problem (P) in a locally convex topological vector space X with an arbitrary number of constraints, we consider three possible dual problems of (P), namely, the usual Lagrangian dual (D), the perturbational dual (Q), and the surrogate dual (Δ), the last one recently introduced in a previous paper of the authors (Goberna et al., J Convex Anal 21(4), 2014). As shown by simple examples, these dual problems may be all different. This paper provides conditions ensuring that inf(P)=max(D), inf(P)=max(Q), and inf(P)=max(Δ) (dual equality and existence of dual optimal solutions) in terms of the so-called closedness regarding to a set. Sufficient conditions guaranteeing min(P)=sup(Q) (dual equality and existence of primal optimal solutions) are also provided, for the nominal problems and also for their perturbational relatives. The particular cases of convex semi-infinite optimization problems (in which either the number of constraints or the dimension of X, but not both, is finite) and linear infinite optimization problems are analyzed. Finally, some applications to the feasibility of convex inequality systems are described.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Whilst traditional optimisation techniques based on mathematical programming techniques are in common use, they suffer from their inability to explore the complexity of decision problems addressed using agricultural system models. In these models, the full decision space is usually very large while the solution space is characterized by many local optima. Methods to search such large decision spaces rely on effective sampling of the problem domain. Nevertheless, problem reduction based on insight into agronomic relations and farming practice is necessary to safeguard computational feasibility. Here, we present a global search approach based on an Evolutionary Algorithm (EA). We introduce a multi-objective evaluation technique within this EA framework, linking the optimisation procedure to the APSIM cropping systems model. The approach addresses the issue of system management when faced with a trade-off between economic and ecological consequences.
Resumo:
This paper presents an approach for optimal design of a fully regenerative dynamic dynamometer using genetic algorithms. The proposed dynamometer system includes an energy storage mechanism to adaptively absorb the energy variations following the dynamometer transients. This allows the minimum power electronics requirement at the mains power supply grid to compensate for the losses. The overall dynamometer system is a dynamic complex system and design of the system is a multi-objective problem, which requires advanced optimisation techniques such as genetic algorithms. The case study of designing and simulation of the dynamometer system indicates that the genetic algorithm based approach is able to locate a best available solution in view of system performance and computational costs.
Resumo:
A new approach to optimisation is introduced based on a precise probabilistic statement of what is ideally required of an optimisation method. It is convenient to express the formalism in terms of the control of a stationary environment. This leads to an objective function for the controller which unifies the objectives of exploration and exploitation, thereby providing a quantitative principle for managing this trade-off. This is demonstrated using a variant of the multi-armed bandit problem. This approach opens new possibilities for optimisation algorithms, particularly by using neural network or other adaptive methods for the adaptive controller. It also opens possibilities for deepening understanding of existing methods. The realisation of these possibilities requires research into practical approximations of the exact formalism.
Resumo:
We experimentally investigate a multi-parameter optimization of conditions for generation of triangular pulses in normal dispersion fiber. We find that triangular pulses suitable for all optical processing applications can be generated for a wide range of input pulse chirps but that triangular pulse quality and stability is improved with increased input pulse chirp.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
Lack of discrimination power and poor weight dispersion remain major issues in Data Envelopment Analysis (DEA). Since the initial multiple criteria DEA (MCDEA) model developed in the late 1990s, only goal programming approaches; that is, the GPDEA-CCR and GPDEA-BCC were introduced for solving the said problems in a multi-objective framework. We found GPDEA models to be invalid and demonstrate that our proposed bi-objective multiple criteria DEA (BiO-MCDEA) outperforms the GPDEA models in the aspects of discrimination power and weight dispersion, as well as requiring less computational codes. An application of energy dependency among 25 European Union member countries is further used to describe the efficacy of our approach. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.
Resumo:
The papers is dedicated to the questions of modeling and basing super-resolution measuring- calculating systems in the context of the conception “device + PC = new possibilities”. By the authors of the article the new mathematical method of solution of the multi-criteria optimization problems was developed. The method is based on physic-mathematical formalism of reduction of fuzzy disfigured measurements. It is shown, that determinative part is played by mathematical properties of physical models of the object, which is measured, surroundings, measuring components of measuring-calculating systems and theirs cooperation as well as the developed mathematical method of processing and interpretation of measurements problem solution.
Resumo:
AMS subject classification: 68Q22, 90C90
Resumo:
AMS subject classification: 49K40, 90C31.
Resumo:
Operation sequencing is one of the crucial tasks in process planning. However, it is an intractable process to identify an optimized operation sequence with minimal machining cost in a vast search space constrained by manufacturing conditions. Also, the information represented by current process plan models for three-axis machining is not sufficient for five-axis machining owing to the two extra degrees of freedom and the difficulty of set-up planning. In this paper, a representation of process plans for five-axis machining is proposed, and the complicated operation sequencing process is modelled as a combinatorial optimization problem. A modern evolutionary algorithm, i.e. the particle swarm optimization (PSO) algorithm, has been employed and modified to solve it effectively. Initial process plan solutions are formed and encoded into particles of the PSO algorithm. The particles 'fly' intelligently in the search space to achieve the best sequence according to the optimization strategies of the PSO algorithm. Meanwhile, to explore the search space comprehensively and to avoid being trapped into local optima, several new operators have been developed to improve the particle movements to form a modified PSO algorithm. A case study used to verify the performance of the modified PSO algorithm shows that the developed PSO can generate satisfactory results in optimizing the process planning problem. © IMechE 2009.
Resumo:
Relay selection has been considered as an effective method to improve the performance of cooperative communication. However, the Channel State Information (CSI) used in relay selection can be outdated, yielding severe performance degradation of cooperative communication systems. In this paper, we investigate the relay selection under outdated CSI in a Decode-and-Forward (DF) cooperative system to improve its outage performance. We formulize an optimization problem, where the set of relays that forwards data is optimized to minimize the probability of outage conditioned on the outdated CSI of all the decodable relays’ links. We then propose a novel multiple-relay selection strategy based on the solution of the optimization problem. Simulation results show that the proposed relay selection strategy achieves large improvement of outage performance compared with the existing relay selection strategies combating outdated CSI given in the literature.