858 resultados para Multi-agent simulation
Resumo:
En esta tesis se propone el uso de agentes inteligentes en entornos de aprendizaje en línea con el fin de mejorar la asistencia y motivación del estudiante a través de contenidos personalizados que tienen en cuenta el estilo de aprendizaje del estudiante y su nivel de conocimiento. Los agentes propuestos se desempeñan como asistentes personales que ayudan al estudiante a llevar a cabo las actividades de aprendizaje midiendo su progreso y motivación. El entorno de agentes se construye a través de una arquitectura multiagente llamada MASPLANG diseñada para dar soporte adaptativo (presentación y navegación adaptativa) a un sistema hipermedia educativo desarrollado en la Universitat de Girona para impartir educación virtual a través del web. Un aspecto importante de esta propuesta es la habilidad de construir un modelo de estudiante híbrido que comienza con un modelo estereotípico del estudiante basado en estilos de aprendizaje y se modifica gradualmente a medida que el estudiante interactúa con el sistema (gustos subjetivos). Dentro del contexto de esta tesis, el aprendizaje se define como el proceso interno que, bajo factores de cambio resulta en la adquisición de la representación interna de un conocimiento o de una actitud. Este proceso interno no se puede medir directamente sino a través de demostraciones observables externas que constituyen el comportamiento relacionado con el objeto de conocimiento. Finalmente, este cambio es el resultado de la experiencia o entrenamiento y tiene una durabilidad que depende de factores como la motivación y el compromiso. El MASPLANG está compuesto por dos niveles de agentes: los intermediarios llamados IA (agentes de información) que están en el nivel inferior y los de Interfaz llamados PDA (agentes asistentes) que están en el nivel superior. Los agentes asistentes atienden a los estudiantes cuando trabajan con el material didáctico de un curso o una lección de aprendizaje. Esta asistencia consiste en la recolección y análisis de las acciones de los estudiantes para ofrecer contenidos personalizados y en la motivación del estudiante durante el aprendizaje mediante el ofrecimiento de contenidos de retroalimentación, ejercicios adaptados al nivel de conocimiento y mensajes, a través de interfaces de usuario animadas y atractivas. Los agentes de información se encargan del mantenimiento de los modelos pedagógico y del dominio y son los que están en completa interacción con las bases de datos del sistema (compendio de actividades del estudiante y modelo del dominio). El escenario de funcionamiento del MASPLANG está definido por el tipo de usuarios y el tipo de contenidos que ofrece. Como su entorno es un sistema hipermedia educativo, los usuarios se clasifican en profesores quienes definen y preparan los contenidos para el aprendizaje adaptativo, y los estudiantes quienes llevan a cabo las actividades de aprendizaje de forma personalizada. El perfil de aprendizaje inicial del estudiante se captura a través de la evaluación del cuestionario ILS (herramienta de diagnóstico del modelo FSLSM de estilos de aprendizaje adoptado para este estudio) que se asigna al estudiante en su primera interacción con el sistema. Este cuestionario consiste en un conjunto de preguntas de naturaleza sicológica cuyo objetivo es determinar los deseos, hábitos y reacciones del estudiante que orientarán la personalización de los contenidos y del entorno de aprendizaje. El modelo del estudiante se construye entonces teniendo en cuenta este perfil de aprendizaje y el nivel de conocimiento obtenido mediante el análisis de las acciones del estudiante en el entorno.
Resumo:
The discovery of new molecular targets and the subsequent development of novel anticancer agents are opening new possibilities for drug combination therapy as anticancer treatment. Polymer-drug conjugates are well established for the delivery of a single therapeutic agent, but only in very recent years their use has been extended to the delivery of multi-agent therapy. These early studies revealed the therapeutic potential of this application but raised new challenges (namely, drug loading and drugs ratio, characterisation, and development of suitable carriers) that need to be addressed for a successful optimisation of the system towards clinical applications.
Resumo:
This paper focuses on improving computer network management by the adoption of artificial intelligence techniques. A logical inference system has being devised to enable automated isolation, diagnosis, and even repair of network problems, thus enhancing the reliability, performance, and security of networks. We propose a distributed multi-agent architecture for network management, where a logical reasoner acts as an external managing entity capable of directing, coordinating, and stimulating actions in an active management architecture. The active networks technology represents the lower level layer which makes possible the deployment of code which implement teleo-reactive agents, distributed across the whole network. We adopt the Situation Calculus to define a network model and the Reactive Golog language to implement the logical reasoner. An active network management architecture is used by the reasoner to inject and execute operational tasks in the network. The integrated system collects the advantages coming from logical reasoning and network programmability, and provides a powerful system capable of performing high-level management tasks in order to deal with network fault.
Resumo:
Studies of construction labour productivity have revealed that limited predictability and multi-agent social complexity make long-range planning of construction projects extremely inaccurate. Fire-fighting, a cultural feature of construction project management, social and structural diversity of involved permanent organizations, and structural temporality all contribute towards relational failures and frequent changes. The main purpose of this paper is therefore to demonstrate that appropriate construction planning may have a profound synergistic effect on structural integration of a project organization. Using the general systems theory perspective it is further a specific objective to investigate and evaluate organizational effects of changes in planning and potentials for achieving continuous project-organizational synergy. The newly developed methodology recognises that planning should also represent a continuous, improvement-leading driving force throughout a project. The synergistic effect of the process planning membership duality fostered project-wide integration, eliminated internal boundaries, and created a pool of constantly upgrading knowledge. It maintained a creative environment that resulted in a number of process-related improvements from all parts of the organization. As a result labour productivity has seen increases of more than 30%, profits have risen from an average of 12% to more than 18%, and project durations have been reduced by several days.
Resumo:
This article presents a prototype model based on a wireless sensor actuator network (WSAN) aimed at optimizing both energy consumption of environmental systems and well-being of occupants in buildings. The model is a system consisting of the following components: a wireless sensor network, `sense diaries', environmental systems such as heating, ventilation and air-conditioning systems, and a central computer. A multi-agent system (MAS) is used to derive and act on the preferences of the occupants. Each occupant is represented by a personal agent in the MAS. The sense diary is a new device designed to elicit feedback from occupants about their satisfaction with the environment. The roles of the components are: the WSAN collects data about physical parameters such as temperature and humidity from an indoor environment; the central computer processes the collected data; the sense diaries leverage trade-offs between energy consumption and well-being, in conjunction with the agent system; and the environmental systems control the indoor environment.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises workspaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing system? The work reported in this paper is motivated towards bridging this gap by proposing swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Among three proposed approaches, the second approach, namely 'Intelligent Agents' is of focus in this paper. The task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier. agents and can be seamlessly transferred between cores in the event of a pre-dicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed approach is validated on a multi-agent simulator.
Resumo:
The work reported in this paper proposes 'Intelligent Agents', a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing systems? How can autonomic computing approaches be extended towards building reliable systems? How can existing technologies be merged to provide a solution for self-managing systems? The work reported in this paper aims to answer these questions by proposing Swarm-Array Computing, a novel technique inspired from swarm robotics and built on the foundations of autonomic and parallel computing paradigms. Two approaches based on intelligent cores and intelligent agents are proposed to achieve autonomy in parallel computing systems. The feasibility of the proposed approaches is validated on a multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
The work reported in this paper proposes a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, 'swarm-array computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task is executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
Can autonomic computing concepts be applied to traditional multi-core systems found in high performance computing environments? In this paper, we propose a novel synergy between parallel computing and swarm robotics to offer a new computing paradigm, `Swarm-Array Computing' that can harness and apply autonomic computing for parallel computing systems. One approach among three proposed approaches in swarm-array computing based on landscapes of intelligent cores, in which the cores of a parallel computing system are abstracted to swarm agents, is investigated. A task gets executed and transferred seamlessly between cores in the proposed approach thereby achieving self-ware properties that characterize autonomic computing. FPGAs are considered as an experimental platform taking into account its application in space robotics. The feasibility of the proposed approach is validated on the SeSAm multi-agent simulator.
Resumo:
The content of this paper is a snapshot of a current project looking at producing a real-time sensor-based building assessment tool, and a system that personalises work-spaces using multi-agent technology. Both systems derive physical environment information from a wireless sensor network that allows clients to subscribe to real-time sensed data. The principal ideologies behind this project are energy efficiency and well-being of occupants; in the context of leveraging the current state-of-the-art in agent technology, wireless sensor networks and building assessment systems to enable the optimisation and assessment of buildings. Participants of this project are from both industry (construction and research) and academia.