916 resultados para Modal Assurance Criterion
Resumo:
Remote sensing has a high potential for environmental evaluation. However, a necessity exists for a better understanding of the relations between the soil attributes and spectral data. The objective of this work was to analyze the spectral behavior of some soil profiles from the region of Piracicaba, São Paulo State, using a laboratory spectroradiometer (400 to 2500 nm). The relations between the reflected electromagnetic energy and the soil physical, chemical and mineralogical attributes were analyzed, verifying the spectral variations of soil samples in depth along the profiles with their classification and discrimination. Sandy soil reflected more, presenting a spectral curve with an ascendant form, opposite to clayey soils. The 1900 nm band discriminated soil with 2:1 mineralogy from the 1:1 and oxidic soils. It was possible to detect the presence of kaolinite, gibbsite, hematite and goethite in the soils through the descriptive aspects of curves, absorption features and reflectance intensity. A relation exists between the weathering stage and spectral data. The evaluation of the superficial and subsuperficial horizon samples allowed characterizing and discriminating the analytical variability of the profile, helping to soil distinguishing and classification.
Resumo:
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.
Resumo:
The aim of this study was to compare the techniques of indirect immunofluorescence assay (IFA) and flow cytometry to clinical and laboratorial evaluation of patients before and after clinical cure and to evaluate the applicability of flow cytometry in post-therapeutic monitoring of patients with American tegumentary leishmaniasis (ATL). Sera from 14 patients before treatment (BT), 13 patients 1 year after treatment (AT), 10 patients 2 and 5 years AT were evaluated. The results from flow cytometry were expressed as levels of IgG reactivity, based on the percentage of positive fluorescent parasites (PPFP). The 1:256 sample dilution allowed us to differentiate individuals BT and AT. Comparative analysis of IFA and flow cytometry by ROC (receiver operating characteristic curve) showed, respectively, AUC (area under curve) = 0.8 (95% CI = 0.64–0.89) and AUC = 0.90 (95% CI = 0.75–0.95), demonstrating that the flow cytometry had equivalent accuracy. Our data demonstrated that 20% was the best cut-off point identified by the ROC curve for the flow cytometry assay. This test showed a sensitivity of 86% and specificity of 77% while the IFA had a sensitivity of 78% and specificity of 85%. The after-treatment screening, through comparative analysis of the technique performance indexes, 1, 2 and 5 years AT, showed an equal performance of the flow cytometry compared with the IFA. However, flow cytometry shows to be a better diagnostic alternative when applied to the study of ATL in the cure criterion. The information obtained in this work opens perspectives to monitor cure after treatment of ATL.
Resumo:
[EN] The paper investigates how modal hedges (Coates 1983) understood as expressions of procedural meaning , i.e. expressions which instruct the addressee/reader how to process the propositional content of an utterance/statement (Watts 2004) are used in product descriptions, advertisements and consumer instructions leaflets for a number of products belonging to the Consumer Health Care category for the purposes of complying with consumer protection laws on the one hand and serving as an implicit disclaimer of manufacturer’s responsibility on the other. The analysis is carried out contrastively for two languages, English and Serbian. The results obtained are discussed and viewed as a matter of cultural variety and difference, especially taking into consideration the fact that consumer protection laws seem to be equally strict in US, UK and Commonwealth, Europe and Serbia.
Resumo:
The human movement analysis (HMA) aims to measure the abilities of a subject to stand or to walk. In the field of HMA, tests are daily performed in research laboratories, hospitals and clinics, aiming to diagnose a disease, distinguish between disease entities, monitor the progress of a treatment and predict the outcome of an intervention [Brand and Crowninshield, 1981; Brand, 1987; Baker, 2006]. To achieve these purposes, clinicians and researchers use measurement devices, like force platforms, stereophotogrammetric systems, accelerometers, baropodometric insoles, etc. This thesis focus on the force platform (FP) and in particular on the quality assessment of the FP data. The principal objective of our work was the design and the experimental validation of a portable system for the in situ calibration of FPs. The thesis is structured as follows: Chapter 1. Description of the physical principles used for the functioning of a FP: how these principles are used to create force transducers, such as strain gauges and piezoelectrics transducers. Then, description of the two category of FPs, three- and six-component, the signals acquisition (hardware structure), and the signals calibration. Finally, a brief description of the use of FPs in HMA, for balance or gait analysis. Chapter 2. Description of the inverse dynamics, the most common method used in the field of HMA. This method uses the signals measured by a FP to estimate kinetic quantities, such as joint forces and moments. The measures of these variables can not be taken directly, unless very invasive techniques; consequently these variables can only be estimated using indirect techniques, as the inverse dynamics. Finally, a brief description of the sources of error, present in the gait analysis. Chapter 3. State of the art in the FP calibration. The selected literature is divided in sections, each section describes: systems for the periodic control of the FP accuracy; systems for the error reduction in the FP signals; systems and procedures for the construction of a FP. In particular is detailed described a calibration system designed by our group, based on the theoretical method proposed by ?. This system was the “starting point” for the new system presented in this thesis. Chapter 4. Description of the new system, divided in its parts: 1) the algorithm; 2) the device; and 3) the calibration procedure, for the correct performing of the calibration process. The algorithm characteristics were optimized by a simulation approach, the results are here presented. In addiction, the different versions of the device are described. Chapter 5. Experimental validation of the new system, achieved by testing it on 4 commercial FPs. The effectiveness of the calibration was verified by measuring, before and after calibration, the accuracy of the FPs in measuring the center of pressure of an applied force. The new system can estimate local and global calibration matrices; by local and global calibration matrices, the non–linearity of the FPs was quantified and locally compensated. Further, a non–linear calibration is proposed. This calibration compensates the non– linear effect in the FP functioning, due to the bending of its upper plate. The experimental results are presented. Chapter 6. Influence of the FP calibration on the estimation of kinetic quantities, with the inverse dynamics approach. Chapter 7. The conclusions of this thesis are presented: need of a calibration of FPs and consequential enhancement in the kinetic data quality. Appendix: Calibration of the LC used in the presented system. Different calibration set–up of a 3D force transducer are presented, and is proposed the optimal set–up, with particular attention to the compensation of non–linearities. The optimal set–up is verified by experimental results.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.
Resumo:
Sustainable computer systems require some flexibility to adapt to environmental unpredictable changes. A solution lies in autonomous software agents which can adapt autonomously to their environments. Though autonomy allows agents to decide which behavior to adopt, a disadvantage is a lack of control, and as a side effect even untrustworthiness: we want to keep some control over such autonomous agents. How to control autonomous agents while respecting their autonomy? A solution is to regulate agents’ behavior by norms. The normative paradigm makes it possible to control autonomous agents while respecting their autonomy, limiting untrustworthiness and augmenting system compliance. It can also facilitate the design of the system, for example, by regulating the coordination among agents. However, an autonomous agent will follow norms or violate them in some conditions. What are the conditions in which a norm is binding upon an agent? While autonomy is regarded as the driving force behind the normative paradigm, cognitive agents provide a basis for modeling the bindingness of norms. In order to cope with the complexity of the modeling of cognitive agents and normative bindingness, we adopt an intentional stance. Since agents are embedded into a dynamic environment, things may not pass at the same instant. Accordingly, our cognitive model is extended to account for some temporal aspects. Special attention is given to the temporal peculiarities of the legal domain such as, among others, the time in force and the time in efficacy of provisions. Some types of normative modifications are also discussed in the framework. It is noteworthy that our temporal account of legal reasoning is integrated to our commonsense temporal account of cognition. As our intention is to build sustainable reasoning systems running unpredictable environment, we adopt a declarative representation of knowledge. A declarative representation of norms will make it easier to update their system representation, thus facilitating system maintenance; and to improve system transparency, thus easing system governance. Since agents are bounded and are embedded into unpredictable environments, and since conflicts may appear amongst mental states and norms, agent reasoning has to be defeasible, i.e. new pieces of information can invalidate formerly derivable conclusions. In this dissertation, our model is formalized into a non-monotonic logic, namely into a temporal modal defeasible logic, in order to account for the interactions between normative systems and software cognitive agents.
Resumo:
[EN]The aim of this work is looking into the possibility of capturing the change in the modal properties (natural frequencies, modal shapes and modal damping ratio) of plain concrete elements due to the presence of cracked areas by using a simple continuum damage zone numerical model.
Resumo:
This work presents a program for simulations of vehicle-track and vehicle-trackstructure dynamic interaction . The method used is computationally efficient in the sense that a reduced number of coordinates is sufficient and doesn’t require high efficiency computers. The method proposes a modal substructuring approach of the system by modelling rails , sleepers and underlying structure with modal coordinates, the vehicle with physical lumped elements coordinates and by introducing interconnection elements between these structures (wheel-rail contact, railpads and ballast) by means of their interaction forces. The Frequency response function (FRF) is also calculated for both cases of track over a structure (a bridge, a viaduct ...) and for the simple vehicle-track program; for each case the vehicle effect on the FRF is then analyzed through the comparison of the FRFs obtained introducing or not a simplified vehicle on the system.
Resumo:
La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
Slender and lighter footbridges are becoming more and more popular to meet the transportation demand and the aesthetical requirements of the modern society. The widespread presence of such particular structures has become possible thanks to the availability of new, lightweight and still capable of carrying heavy loads material . Therefore, these kind of structure, are particularly sensitive to vibration serviceability problems, especially induced by human activities. As a consequence, it has been imperative to study the dynamic behaviour of such slender pedestrian bridges in order to define their modal characteristics. As an alternative to a Finite Element Analysis to find natural frequencies, damping and mode shape, a so-called Operational Modal Analysis is a valid tool to obtain these parameters through an ambient vibration test. This work provides a useful insight into the Operational Modal Analysis technique and It reports the investigation of the CEME Skywalk, a pedestrian bridge located at the University of British Columbia, in Vancouver, Canada. Furthermore, human-induced vibration tests have been performed and the dynamic characteristics derived with these tests have been compared with the ones from the ambient vibration tests. The effect of the dynamic properties of the two buildings supporting the CEME Skywalk on the dynamic behaviour of the bridge has been also investigated.
Non-normal modal logics, quantification, and deontic dilemmas. A study in multi-relational semantics
Resumo:
This dissertation is devoted to the study of non-normal (modal) systems for deontic logics, both on the propositional level, and on the first order one. In particular we developed our study the Multi-relational setting that generalises standard Kripke Semantics. We present new completeness results concerning the semantic setting of several systems which are able to handle normative dilemmas and conflicts. Although primarily driven by issues related to the legal and moral field, these results are also relevant for the more theoretical field of Modal Logic itself, as we propose a syntactical, and semantic study of intermediate systems between the classical propositional calculus CPC and the minimal normal modal logic K.