976 resultados para Mixed integer programming


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integer programming, simulation, and rules of thumb have been integrated to develop a simulation-based heuristic for short-term assignment of fleet in the car rental industry. It generates a plan for car movements, and a set of booking limits to produce high revenue for a given planning horizon. Three different scenarios were used to validate the heuristic. The heuristic's mean revenue was significant higher than the historical ones, in all three scenarios. Time to run the heuristic for each experiment was within the time limits of three hours set for the decision making process even though it is not fully automated. These findings demonstrated that the heuristic provides better plans (plans that yield higher profit) for the dynamic allocation of fleet than the historical decision processes. Another contribution of this effort is the integration of IP and rules of thumb to search for better performance under stochastic conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are two types of work typically performed in services which differ in the degree of control management has over when the work must be done. Serving customers, an activity that can occur only when customers are in the system is, by its nature, uncontrollable work. In contrast, the execution of controllable work does not require the presence of customers, and is work over which management has some degree of temporal control. This paper presents two integer programming models for optimally scheduling controllable work simultaneously with shifts. One model explicitly defines variables for the times at which controllable work may be started, while the other uses implicit modeling to reduce the number of variables. In an initial experiment of 864 test problems, the latter model yielded optimal solutions in approximately 81 percent of the time required by the former model. To evaluate the impact on customer service of having front-line employees perform controllable work, a second experiment was conducted simulating 5,832 service delivery systems. The results show that controllable work offers a useful means of improving labor utilization. Perhaps more important, it was found that having front-line employees perform controllable work did not degrade the desired level of customer service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an integer programming model for developing optimal shift schedules while allowing extensive flexibility in terms of alternate shift starting times, shift lengths, and break placement. The model combines the work of Moondra (1976) and Bechtold and Jacobs (1990) by implicitly matching meal breaks to implicitly represented shifts. Moreover, the new model extends the work of these authors to enable the scheduling of overtime and the scheduling of rest breaks. We compare the new model to Bechtold and Jacobs' model over a diverse set of 588 test problems. The new model generates optimal solutions more rapidly, solves problems with more shift alternatives, and does not generate schedules violating the operative restrictions on break timing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse est une contribution à la modélisation, la planification et l’optimisation du transport pour l’approvisionnement en bois de forêt des industries de première transformation. Dans ce domaine, les aléas climatiques (mise au sol des bois par les tempêtes), sanitaires (attaques bactériologiques et fongiques des bois) et commerciaux (variabilité et exigence croissante des marchés) poussent les divers acteurs du secteur (entrepreneurs et exploitants forestiers, transporteurs) à revoir l’organisation de la filière logistique d’approvisionnement, afin d’améliorer la qualité de service (adéquation offre-demande) et de diminuer les coûts. L’objectif principal de cette thèse était de proposer un modèle de pilotage améliorant la performance du transport forestier, en respectant les contraintes et les pratiques du secteur. Les résultats établissent une démarche de planification hiérarchique des activités de transport à deux niveaux de décision, tactique et opérationnel. Au niveau tactique, une optimisation multi-périodes permet de répondre aux commandes en minimisant l’activité globale de transport, sous contrainte de capacité agrégée des moyens de transport accessibles. Ce niveau permet de mettre en œuvre des politiques de lissage de charge et d’organisation de sous-traitance ou de partenariats entre acteurs de transport. Au niveau opérationnel, les plans tactiques alloués à chaque transporteur sont désagrégés, pour permettre une optimisation des tournées des flottes, sous contrainte des capacités physiques de ces flottes. Les modèles d’optimisation de chaque niveau sont formalisés en programmation linéaire mixte avec variables binaires. L’applicabilité des modèles a été testée en utilisant un jeu de données industrielles en région Aquitaine et a montré des améliorations significatives d’exploitation des capacités de transport par rapport aux pratiques actuelles. Les modèles de décision ont été conçus pour s’adapter à tout contexte organisationnel, partenarial ou non : la production du plan tactique possède un caractère générique sans présomption de l’organisation, celle-ci étant prise en compte, dans un deuxième temps, au niveau de l’optimisation opérationnelle du plan de transport de chaque acteur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supply chains are ubiquitous in any commercial delivery systems. The exchange of goods and services, from different supply points to distinct destinations scattered along a given geographical area, requires the management of stocks and vehicles fleets in order to minimize costs while maintaining good quality services. Even if the operating conditions remain constant over a given time horizon, managing a supply chain is a very complex task. Its complexity increases exponentially with both the number of network nodes and the dynamical operational changes. Moreover, the management system must be adaptive in order to easily cope with several disturbances such as machinery and vehicles breakdowns or changes in demand. This work proposes the use of a model predictive control paradigm in order to tackle the above referred issues. The obtained simulation results suggest that this strategy promotes an easy tasks rescheduling in case of disturbances or anticipated changes in operating conditions. © Springer International Publishing Switzerland 2017

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Social network sites (SNS), such as Facebook, Google+ and Twitter, have attracted hundreds of millions of users daily since their appearance. Within SNS, users connect to each other, express their identity, disseminate information and form cooperation by interacting with their connected peers. The increasing popularity and ubiquity of SNS usage and the invaluable user behaviors and connections give birth to many applications and business models. We look into several important problems within the social network ecosystem. The first one is the SNS advertisement allocation problem. The other two are related to trust mechanisms design in social network setting, including local trust inference and global trust evaluation. In SNS advertising, we study the problem of advertisement allocation from the ad platform's angle, and discuss its differences with the advertising model in the search engine setting. By leveraging the connection between social networks and hyperbolic geometry, we propose to solve the problem via approximation using hyperbolic embedding and convex optimization. A hyperbolic embedding method, \hcm, is designed for the SNS ad allocation problem, and several components are introduced to realize the optimization formulation. We show the advantages of our new approach in solving the problem compared to the baseline integer programming (IP) formulation. In studying the problem of trust mechanisms in social networks, we consider the existence of distrust (i.e. negative trust) relationships, and differentiate between the concept of local trust and global trust in social network setting. In the problem of local trust inference, we propose a 2-D trust model. Based on the model, we develop a semiring-based trust inference framework. In global trust evaluation, we consider a general setting with conflicting opinions, and propose a consensus-based approach to solve the complex problem in signed trust networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM projects (Chapter 3). Returns from implemented ECM projects are used to fund additional ECM projects. In these cases, fluctuations in energy costs and uncertainty in the estimated savings severely influence ECM project selection and the amount of the appropriation requested. A risk aversion method proposed imposes a minimum on the number of “of projects completed in each stage. A comparative method using Conditional Value at Risk is analyzed. Time consistency was addressed in this chapter. This work demonstrates how a risk-based, stochastic, multi-stage model with binary decision variables at each stage provides a much more accurate estimate for planning than the agency’s traditional approach and deterministic models. Finally, in Chapter 4, a rolling-horizon model allows for subadditivity and superadditivity of the energy savings to simulate interactive effects between ECM projects. The approach makes use of inequalities (McCormick, 1976) to re-express constraints that involve the product of binary variables with an exact linearization (related to the convex hull of those constraints). This model additionally shows the benefits of learning between stages while remaining consistent with the single congressional appropriations framework.