996 resultados para Mitochondrial complexes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological activity of interleukin (IL)-2 and other cytokines in vivo can be augmented by binding to certain anti-cytokine monoclonal antibodies (mAb). Here, we review evidence on how IL-2/anti-IL-2 mAb complexes can be used to cause selective stimulation and expansion of certain T-cell subsets. With some anti-IL-2 mAbs, injection of IL-2/mAb complexes leads to expansion of CD8 T effector cells but not CD4 T regulatory cells (Tregs); these complexes exert less adverse side effects than soluble IL-2 and display powerful antitumor activity. Other IL-2/mAb complexes have minimal effects on CD8 T cells but cause marked expansion of Tregs. Preconditioning mice with these complexes leads to permanent acceptance of MHC-disparate pancreatic islets in the absence of immunosuppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A point mutation at the locus 3243 of the mitonchondrial DNA (mtDNA) is associated with either the MIDD syndrome (maternally inherited diabetes, deafness), the MELAS syndrome (myopathy, encephalitis, lactic acidosis, stroke) or cardiac, digestive, endocrine or exocrine dysfunctions. We report a peculiar maculopathy in two patients with an mtDNA 3243 mutation. HISTORY AND SIGNS: Case 1: A visually asymptomatic 40-year-old woman was examined for screening of diabetic retinopathy. Visual acuity was 10 / 10 in both eyes. Case 2: A 54-year-old woman with deafness and diabetes complained of visual loss. Visual acuity was 6 / 10 for the right eye and 0.5 / 10 for the left eye. Both patients exhibited a chorioretinal areolar atrophy. Case 1 was followed over 15 years and exhibited a slow progression of the maculopathy with moderate loss of visual acuity to 6 / 10 in both eyes, but marked handicap from the annular scotoma. THERAPY AND OUTCOME: None. CONCLUSION: Both patients presented a perimacular annular retinal atrophy. Patients harbouring mtDNA 3243 mutation should be examined for the presence of a maculopathy, even if they are asymptomatic. Conversely, the finding of such a geographic maculopathy should suggest the possibility of a point mutation at the locus 3243 of the mitochondrial DNA, especially in the presences of diabetes mellitus and/or deafness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoblastoma is the most common pediatric intraocular neoplasm. While retinoblastoma development requires the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, additional genomic changes are involved in tumor progression, which progressively lead to resistance of tumor cells to death. Therapeutics acting at very downstream levels of death signaling pathways should therefore be interesting in killing retinoblastoma cells. The BH3-only proteins promote apoptosis by modulating the interaction between the pro- and antiapoptotic members of the BCL2 protein family, and this effect can be recapitulated by the BH3 domains. This report analyzes the effect of various BH3 peptides, corresponding to different BH3-only proteins, on two retinoblastoma cell lines, Y79 and WERI-Rb, as well as on the photoreceptor cell line 661W. The BH3 peptide BIRO1, derived from the BCL2L11 death domain, was very effective in promoting Y79 and WERI-Rb cell death without affecting the 661W photoreceptor cells. This cell death was efficient even in absence of BAX and was shown to be caspase independent. While ROS production or AIF release was not detected from mitochondria of treated cells, BIRO1 initiated mitochondria fragmentation in a short period of time following treatment. IMPLICATIONS: The BIRO1 peptide is highly effective at killing retinoblastoma cells and has potential as a peptidomimetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluble MHC-peptide (pMHC) complexes induce intracellular calcium mobilization, diverse phosphorylation events, and death of CD8+ CTL, given that they are at least dimeric and co-engage CD8. By testing dimeric, tetrameric, and octameric pMHC complexes containing spacers of different lengths, we show that their ability to activate CTL decreases as the distance between their subunit MHC complexes increases. Remarkably, pMHC complexes containing long rigid polyproline spacers (> or =80 A) inhibit target cell killing by cloned S14 CTL in a dose- and valence-dependent manner. Long octameric pMHC complexes abolished target cell lysis, even very strong lysis, at nanomolar concentrations. By contrast, an altered peptide ligand antagonist was only weakly inhibitory and only at high concentrations. Long D(b)-gp33 complexes strongly and specifically inhibited the D(b)-restricted lymphocytic choriomeningitis virus CTL response in vitro and in vivo. We show that complications related to transfer of peptide from soluble to cell-associated MHC molecules can be circumvented by using covalent pMHC complexes. Long pMHC complexes efficiently inhibited CTL target cell conjugate formation by interfering with TCR-mediated activation of LFA-1. Such reagents provide a new and powerful means to inhibit Ag-specific CTL responses and hence should be useful to blunt autoimmune disorders such as diabetes type I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in further individuals with congenital cataracts and cardiomyopathy identified numerous loss-of-function mutations in an additional eight families, confirming the causal nature of AGK deficiency in Sengers syndrome. The loss of AGK led to a decrease of the adenine nucleotide translocator in the inner mitochondrial membrane in muscle, consistent with a role of AGK in driving the assembly of the translocator as a result of its effects on phospholipid metabolism in mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is an important human pathogen, persistently infecting more than 170 million individuals worldwide. Studies of the HCV life cycle have become possible with the development of cell culture systems supporting the replication of viral RNA and the production of infectious virus. However, the exact functions of individual proteins, especially of nonstructural protein 4B (NS4B), remain poorly understood. NS4B triggers the formation of specific, vesicular membrane rearrangements, referred to as membranous webs, which have been reported to represent sites of HCV RNA replication. However, the mechanism of vesicle induction is not known. In this study, a panel of 15 mutants carrying substitutions in the highly conserved NS4B C-terminal domain was generated. Five mutations had only a minor effect on replication, but two of them enhanced assembly and release of infectious virus. Ten mutants were replication defective and used for selection of pseudoreversions. Most of the pseudoreversions also localized to the highly conserved NS4B C-terminal domain and were found to restore replication competence upon insertion into the corresponding primary mutant. Importantly, pseudoreversions restoring replication competence also restored heterotypic NS4B self-interaction, which was disrupted by the primary mutation. Finally, electron microscopy analyses of membrane alterations induced by NS4B mutants revealed striking morphological abnormalities, which were restored to wild-type morphology by the corresponding pseudoreversion. These findings demonstrate the important role of the C-terminal domain in NS4B self-interaction and the formation of functional HCV replication complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary The specific CD8+ T cell immune response against tumors relies on the recognition by the T cell receptor (TCR) on cytotoxic T lymphocytes (CTL) of antigenic peptides bound to the class I major histocompatibility complex (MHC) molecule. Such tumor associated antigenic peptides are the focus of tumor immunotherapy with peptide vaccines. The strategy for obtaining an improved immune response often involves the design of modified tumor associated antigenic peptides. Such modifications aim at creating higher affinity and/or degradation resistant peptides and require precise structures of the peptide-MHC class I complex. In addition, the modified peptide must be cross-recognized by CTLs specific for the parental peptide, i.e. preserve the structure of the epitope. Detailed structural information on the modified peptide in complex with MHC is necessary for such predictions. In this thesis, the main focus is the development of theoretical in silico methods for prediction of both structure and cross-reactivity of peptide-MHC class I complexes. Applications of these methods in the context of immunotherapy are also presented. First, a theoretical method for structure prediction of peptide-MHC class I complexes is developed and validated. The approach is based on a molecular dynamics protocol to sample the conformational space of the peptide in its MHC environment. The sampled conformers are evaluated using conformational free energy calculations. The method, which is evaluated for its ability to reproduce 41 X-ray crystallographic structures of different peptide-MHC class I complexes, shows an overall prediction success of 83%. Importantly, in the clinically highly relevant subset of peptide-HLAA*0201 complexes, the prediction success is 100%. Based on these structure predictions, a theoretical approach for prediction of cross-reactivity is developed and validated. This method involves the generation of quantitative structure-activity relationships using three-dimensional molecular descriptors and a genetic neural network. The generated relationships are highly predictive as proved by high cross-validated correlation coefficients (0.78-0.79). Together, the here developed theoretical methods open the door for efficient rational design of improved peptides to be used in immunotherapy. Résumé La réponse immunitaire spécifique contre des tumeurs dépend de la reconnaissance par les récepteurs des cellules T CD8+ de peptides antigéniques présentés par les complexes majeurs d'histocompatibilité (CMH) de classe I. Ces peptides sont utilisés comme cible dans l'immunothérapie par vaccins peptidiques. Afin d'augmenter la réponse immunitaire, les peptides sont modifiés de façon à améliorer l'affinité et/ou la résistance à la dégradation. Ceci nécessite de connaître la structure tridimensionnelle des complexes peptide-CMH. De plus, les peptides modifiés doivent être reconnus par des cellules T spécifiques du peptide natif. La structure de l'épitope doit donc être préservée et des structures détaillées des complexes peptide-CMH sont nécessaires. Dans cette thèse, le thème central est le développement des méthodes computationnelles de prédiction des structures des complexes peptide-CMH classe I et de la reconnaissance croisée. Des applications de ces méthodes de prédiction à l'immunothérapie sont également présentées. Premièrement, une méthode théorique de prédiction des structures des complexes peptide-CMH classe I est développée et validée. Cette méthode est basée sur un échantillonnage de l'espace conformationnel du peptide dans le contexte du récepteur CMH classe I par dynamique moléculaire. Les conformations sont évaluées par leurs énergies libres conformationnelles. La méthode est validée par sa capacité à reproduire 41 structures des complexes peptide-CMH classe I obtenues par cristallographie aux rayons X. Le succès prédictif général est de 83%. Pour le sous-groupe HLA-A*0201 de complexes de grande importance pour l'immunothérapie, ce succès est de 100%. Deuxièmement, à partir de ces structures prédites in silico, une méthode théorique de prédiction de la reconnaissance croisée est développée et validée. Celle-ci consiste à générer des relations structure-activité quantitatives en utilisant des descripteurs moléculaires tridimensionnels et un réseau de neurones couplé à un algorithme génétique. Les relations générées montrent une capacité de prédiction remarquable avec des valeurs de coefficients de corrélation de validation croisée élevées (0.78-0.79). Les méthodes théoriques développées dans le cadre de cette thèse ouvrent la voie du design de vaccins peptidiques améliorés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders. Antioxid. Redox Signal. 00, 000000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...