956 resultados para Microsatellite markers


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The mechanistic basis of speciation and in particular the contribution of behaviour to the completion of the speciation process is often contentious. Contact zones between related taxa provide a situation where selection against hybridization might reinforce separation by behavioural mechanisms, which could ultimately fully isolate the taxa. One of the most abundant European mammals, the common vole Microtus arvalis, forms multiple natural hybrid zones where rapidly diverging evolutionary lineages meet in secondary contact. Very narrow zones of hybridization spanning only a few kilometres and sex-specific gene flow patterns indicate reduced fitness of natural hybrids and incipient speciation between some of the evolutionary lineages. In this study, we examined the contribution of behavioural mechanisms to the speciation process in these rodents by fine-mapping allopatric and parapatric populations in the hybrid zone between the Western and Central lineages and experimental testing of the partner preferences of wild, pure-bred and hybrid female common voles. Results Genetic analysis based on microsatellite markers revealed the presence of multiple parapatric and largely non-admixed populations at distances of about 10 km at the edge of the area of natural hybridization between the Western and Central lineages. Wild females from Western parapatric populations and lab-born F1 hybrids preferred males from the Western lineage whereas wild females of Central parapatric origin showed no measurable preference. Furthermore, wild and lab-born females from allopatric populations of the Western or Central lineages showed no detectable preference for males from either lineage. Conclusions The detected partner preferences are consistent with asymmetrical reinforcement of pre-mating reproductive isolation mechanisms in the European common vole and with earlier results suggesting that hybridization is more detrimental to the Western lineage. As a consequence, these differences in behaviour might contribute to a further geographical stabilization of this moving hybrid zone. Such behavioural processes could also provide a mechanistic perspective for frequently-detected asymmetrical introgression patterns in the largely allopatrically diversifying Microtus genus and other rapidly speciating rodents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: Species diversity and genetic diversity may be affected in parallel by similar environmental drivers. However, genetic diversity may also be affected independently by habitat characteristics. We aim at disentangling relationships between genetic diversity, species diversity and habitat characteristics of woody species in subtropical forest. Methods: We studied 11 dominant tree and shrub species in 27 plots in Gutianshan, China, and assessed their genetic diversity (Ar) and population differentiation (F’ST) with microsatellite markers. We tested if Ar and population specific F’ST were correlated to local species diversity and plot characteristics. Multi-model inference and model averaging were used to determine the relative importance of each predictor. Additionally we tested for isolation-by-distance and isolation-by-elevation by regressing pairwise F’ST against pairwise spatial and elevational distances. Important findings: Genetic diversity was not related to species diversity for any of the study species. Thus, our results do not support joint effects of habitat characteristics on these two levels of biodiversity. Instead, genetic diversity in two understory shrubs, Rhododendron simsii and Vaccinium carlesii, was affected by plot age with decreasing genetic diversity in successionally older plots. Population differentiation increased with plot age in Rhododendron simsii and Lithocarpus glaber. This shows that succession can reduce genetic diversity within, and increase genetic diversity between populations. Furthermore, we found four cases of isolation-by-distance and two cases of isolation-by-elevation. The former indicates inefficient pollen and seed dispersal by animals whereas the latter might be due to phenological asynchronies. These patterns indicate that succession can affect genetic diversity without parallel effects on species diversity and that gene flow in a continuous subtropical forest can be restricted even at a local scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular mechanisms that underlie preleukemic myelodysplasia (MDS) and acute myelogenous leukemia (AML) are poorly understood. In MDS or AML with a refractory clinical course, more than 30% of patients have acquired interstitial or complete deletions of chromosome 5. The 5q13.3 chromosomal segment is commonly lost as the result of 5q deletion. Reciprocal and unbalanced translocations of 5q13.3 can also occur as sole anomalies associated with refractory AML or MDS. This study addresses the hypothesis that a critical gene at 5q13.3 functions either as a classical tumor suppressor or as a chromosomal translocation partner and contributes to leukemogenesis. ^ Previous studies from our laboratory delineated a critical region of loss to a 2.5–3.0Mb interval at 5q13.3 between microsatellite markers D5S672 and GATA-P18104. The critical region of loss was later resolved to an interval of approximately 2Mb between the markers D5S672 and D5S2029. I, then generated a long range physical map of yeast artificial chromosomes (YACs) and developed novel sequence tagged sites (STS). To enhance the resolution of this map, bacterial artificial chromosomes (BACs) were used to construct a triply linked contig across a 1 Mb interval. These BACs were used as probes for fluorescent in situ hybridization (FISH) on an AML cell line to define the 5q13.3 critical region. A 200kb BAC, 484a9, spans the translocation breakpoint in this cell line. A novel gene, SSDP2 (single stranded DNA binding protein), is disrupted at the breakpoint because its first four exons are encoded within 140kb of BAC 484a9. This finding suggests that SSDP2 is the critical gene at 5q13.3. ^ In addition, I made an observation that deletions of chromosome 5q13 co-segregate with loss of the chromosome 17p. In some cases the deletions result from unbalanced translocations between 5q13 and 17p13. It was confirmed that the TP53 gene is deleted in patients with 17p loss, and the remaining allele harbors somatic mutation. Thus, the genetic basis for the aggressive clinical course in AML and MDS may be caused by functional cooperation between deletion or disruption of the 5q13.3 critical gene and inactivation of TP53. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although more than 100 genes associated with inherited retinal disease have been mapped to chromosomal locations, less than half of these genes have been cloned. This text includes identification and evaluation of candidate genes for three autosomal dominant forms of inherited retinal degeneration: atypical vitelliform macular dystrophy (VMD1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP). ^ VMD1 is a disorder characterized by complete penetrance but extremely variable expressivity, and includes macular or peripheral retinal lesions and peripappilary abnormalitites. In 1984, linkage was reported between VMD1 and soluble glutamate-pyruvate transaminase GPT); however, placement of GPT to 8q24 on linkage maps had been debated, and VMD1 did not show linkage to microsatellite markers in that region. This study excluded linkage between the loci by cloning GPT, identifying the nucleotide substitution associated with the GPT sozymes, and by assaying VMD1 family samples with an RFLP designed to detect the substitution. In addition, linkage of VMD1 to the known dominant macular degeneration loci was excluded. ^ CORD is characterized by early onset of color-vision deficiency, and decreased visual acuity, However, this retinal degeneration progresses to no light perception, severe macular lesion, and “bone-spicule” accumulations in the peripheral retina. In this study, the disorder in a large Texan family was mapped to the CORD2 locus of 19q13, and a mutation in the retina/pineal-specific cone-rod homeobox gene (CRX) was identified as the disease cause. In addition, mutations in CRX were associated with significantly different retinal disease phenotypes, including retinitis pigmentosa and Leber congenital amaurosis. ^ Many of the mutations leading to inherited retinal disorders have been identified in genes like CRX, which are expressed predominantly in the retina and pineal gland. Therefore, a combination of database analysis and laboratory investigation was used to identify 26 novel retina/pineal-specific expressed sequence tag (EST) clusters as candidate genes for inherited retinal disorders. Eight of these genes were mapped into the candidate regions of inherited retinal degeneration loci. ^ Two of the eight clusters mapped into the retinitis pigmentosa RP13 candidate region of 17p13, and were both determined to represent a single gene that is highly expressed in photoreceptors. This gene, the Ah receptor-interacting like protein-1 (AIPL1), was cloned, characterized, and screened for mutations in RP13 patient DNA samples. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El maní cultivado (Arachis hypogaea L.), es una especie de gran importancia económica, nativo de América del Sur. Se divide en dos subespecies y seis variedades botánicas. Genéticamente es alotetraploide, constituido por dos juegos genómicos duplicados. El empleo de marcadores microsatélites resulta más apropiado para realizar la caracterización genética de esta especie, puesto que permiten detectar un elevado nivel de polimorfismo. El objetivo del presente trabajo fue caracterizar la diversidad genética existente en las entradas de germoplasma de maní cultivado pertenecientes al Banco Activo de Germoplasma de Maní del Instituto Nacional de Tecnología Agropecuaria (INTA). Veinticinco entradas fueron genotipificadas con 23 marcadores microsatélites, de los cuales, 17 resultaron polimórficos. Se observaron 75 fragmentos polimórficos amplificados, con un promedio de 4,41 alelos por locus y un rango de 1 a 9 alelos. El contenido de información polimórfica osciló entre 0,15 y 0,58. El valor de la diversidad genética promedio fue de 0,165. Tanto el análisis de conglomerados como el de coordenadas principales evidenciaron dos grupos, uno formado por los materiales representantes de la subespecie fastigiata y otro por los de la subespecie hypogaea. Los resultados del análisis molecular de la varianza mostraron varianza tanto dentro como entre, las subespecies analizadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el presente trabajo se ha llevado a cabo un estudio de la biodiversidad del frijol común (Phaseolus vulgaris L.) en Honduras, que es el segundo de los cultivos de granos básicos en importancia. Dicho estudio se ha realizado mediante una caracterización agromorfológica, molecular y ecogeográfica en una selección de 300 accesiones conservadas en el banco de germoplasma ubicado en la Escuela Agrícola Panamericana (EAP) El Zamorano, y que se colectaron en 13 departamentos del país durante el periodo de 1990 a 1994. Estas accesiones fueron colectadas cuatro años antes del acontecimiento del huracán Mitch, el cual a su paso afectó al 96% del área total cultivable en su momento, lo cual nos hace considerar que la biodiversidad de razas locales (landraces) de frijol común existentes in situ fueron severamente afectadas. Los trabajos dirigidos a analizar la biodiversidad de razas locales de frijol común en Honduras son escasos, y este trabajo se constituye como el primero que incluye una amplia muestra a ser estudiada a través de una caracterización en tres aspectos complementarios (agromorfológico, molecular y ecogeográfico). Se evaluaron 32 caracteres agromorfológicos, 12 cuantitativos y 20 cualitativos, en distintas partes de la planta. Se establecieron las correlaciones entre los caracteres agromorfológicos y se elaboró un dendrograma con los mismos, en el que se formaron ocho grupos, en parte relacionados principalmente con los colores y tamaños de la semilla. Mediante el análisis de componentes principales se estudiaron los caracteres de más peso en cada uno de los tres primeros componentes. Asimismo, se estudiaron las correlaciones entre caracteres, siendo las más altas la longitud y anchura de la hoja, días a madurez y a cosecha y longitud y peso de semilla. Por otra parte, el mapa de diversidad agromorfológica mostró la existencia de tres zonas con mayor diversidad: en el oeste (en los departamentos de Santa Bárbara, Lempira y Copán), en el centro-norte (en los departamentos de Francisco Morazán, Yoro y Atlántida) y en el sur (en el departamento de El Paraíso y al sur de Francisco Morazán). Para la caracterización molecular partimos de 12 marcadores de tipo microsatélite, evaluados en 54 accesiones, que fueron elegidas por constituir grupos que compartían un mismo nombre local. Finalmente, se seleccionaron los cuatro microsatélites (BM53, GATS91, BM211 y PV-AT007) que resultaron ser más polimórficos e informativos para el análisis de las 300 accesiones, con los que se detectaron un total de 119 alelos (21 de ellos únicos o privados de accesión) y 256 patrones alélicos diferentes. Para estudiar la estructura y relaciones genéticas en las 300 accesiones se incluyeron en el análisis tres controles o accesiones de referencia, pertenecientes dos de ellas al acervo genético Andino y una al Mesoamericano. En el dendrograma se obtuvieron 25 grupos de accesiones con idénticas combinaciones de alelos. Al comparar este dendrograma con el de caracteres agromorfológicos se observaron diversos grupos con marcada similitud en ambos. Un total de 118 accesiones resultaron ser homogéneas y homocigóticas, a la vez que representativas del grupo de 300 accesiones, por lo que se analizaron con más detalle. El análisis de la estructura genética definió la formación de dos grupos, supuestamente relacionados con los acervos genéticos Andino (48) y Mesoamericano (61), y un reducido número de accesiones (9) que podrían tener un origen híbrido, debido a la existencia de un cierto grado de introgresión entre ambos acervos. La diferenciación genética entre ambos grupos fue del 13,3%. Asimismo, 66 de los 82 alelos detectados fueron privados de grupo, 30 del supuesto grupo Andino y 36 del Mesoamericano. Con relación al mapa de diversidad molecular, presentó una distribución bastante similar al de la diversidad agromorfológica, detectándose también las zonas de mayor diversidad genética en el oeste (en los departamentos de Lempira y Santa Bárbara), en el centro-norte (en los departamentos de Yoro y Atlántida) y en el sur (en el departamento de El Paraíso y al sur de Francisco Morazán). Para la caracterización ecogeográfica se seleccionaron variables de tipo bioclimático (2), geofísico (2) y edáfico (8), y mediante el método de agrupamiento de partición alrededor de los medoides, la combinación de los grupos con cada uno de los tres tipos de variables definió un total de 32 categorías ecogeográficas en el país, detectándose accesiones en 16 de ellas. La distribución de las accesiones previsiblemente esté relacionada con la existencia de condiciones más favorables al cultivo de frijol. En el mapa de diversidad ecogeográfica, nuevamente, se observaron varias zonas con alta diversidad tanto en el oeste, como en el centro-norte y en el sur del país. Como consecuencia del estudio realizado, se concluyó la existencia de una marcada biodiversidad en el material analizado, desde el punto de vista tanto agromorfológico como molecular. Por lo que resulta de gran importancia plantear la conservación de este patrimonio genético tanto ex situ, en bancos de germoplasma, como on farm, en las propias explotaciones de los agricultores del país, siempre que sea posible. ABSTRACT In the present work we have carried out a study of the biodiversity of the common bean (Phaseolus vulgaris L) in Honduras, which is the second of the basic grain crops in importance. This study was conducted through agro-morphological, molecular and ecogeographical characterization of a selection of 300 accessions conserved in the genebank located in the ‘Escuela Agrícola Panamericana (EAP) El Zamorano’ that were collected in 13 departments of the country during the 1990 to 1994 period. These accessions were collected four years before the occurrence of Mitch hurricane, which affected 96% of the total cultivable area at the time, which makes us to consider that the biodiversity of local landraces of common bean existing in situ were severely affected. The work aimed to analyze the biodiversity of local races of common bean in Honduras are scarce, and this work constitutes the first to include a large sample to be studied through a characterization on three complementary aspects (agromorphological, molecular and ecogeographical). Thirty two agromorphological characters, 12 quantitative and 20 qualitative, in various parts of the plant were evaluated. Correlations between agromorphological characters were established and a dendrogram with them was constructed, in which eight groups were formed, in part mainly related to the colors and sizes of the seeds. By principal component analysis the characters with more weight in each of the first three components were studied. Also, correlations between characters were studied, the highest of them being length and leaf width, days to maturity and harvest, and seed length and weight. Moreover, the map of agromorphological diversity showed the existence of three areas with more diversity: the west (departments of Santa Barbara, Copan and Lempira), the center-north (departments of Francisco Morazán, Yoro and Atlántida) and the south (department of El Paraiso and south of Francisco Morazán). For molecular characterization we started with 12 microsatellite markers, evaluated in 54 accessions, which were chosen because they formed groups that shared the same local name. Finally, four microsatellites (BM53, GATS91, BM211 and PV-AT007) were selected for the analysis of 300 accessions, since they were the most polymorphic and informative. They gave a total of 119 alleles (21 of them unique or private for the accession) and 256 different allelic patterns. To study the structure and genetic relationships in the 300 accessions, three controls or accessions of reference were included in the analysis: two of them belonging to the Andean gene pool and one to the Mesoamerican. In the dendrogram, 25 accession groups with identical allele combinations were obtained. Comparing this dendrogram to the obtained with agromorphological characters, several groups with marked similarity in both were observed. A total of 118 accessions were homozygous and homogeneous, while representing the group of 300 accessions, therefore they were analyzed in more detail. The analysis of the genetic structure defined the formation of two groups, supposedly related to the Andean (48) and the Mesoamerican (61) gene pools, and a small number of accessions (9) which may have a hybrid origin, due to the existence of some degree of introgression between both gene pools. Genetic differentiation between both groups was 13.3%. Also, 66 of the 82 detected alleles were private or unique for the group, 30 of the supposed Andean group and 36 of the Mesoamerican. With relation to the map of molecular diversity, it showed a quite similar distribution to the agromorphological, also detecting the areas of greatest genetic diversity in the west (departments of Lempira and Santa Bárbara), in the center-north (departments Atlántida and Yoro) and in the south (departments of El Paraíso and south of Francisco Morazán). For the ecogeographical characterization, bioclimatic (2), geophysical (2) and edaphic (8) variables were selected, and by the method of clustering partition around the medoids, the combination of the groups to each of the three types of variables defined a total of 32 ecogeographical categories in the country, having accessions in 16 of them. The distribution of accessions is likely related to the existence of more favorable conditions for the cultivation of beans. The map of ecogeographical diversity, again, several areas with high diversity both in the west and in the center-north and in the south of the country were observed. As a result of study, the existence of marked biodiversity in the analyzed material was concluded, both from the agromorphological and from the molecular point of view. Consequently it is very important to propose the conservation of this genetic heritage both ex situ, in genebanks, as on farm, in the holdings of the farmers of the country, whenever possible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a detailed genetic study of Castanea sativa in El Bierzo, a major nut production region with interesting features. It is located within a glacial refuge at one extreme of the distribution area (northwest Spain); it has a centenary tradition of chestnut management; and more importantly, it shows an unusual degree of genetic isolation. Seven nuclear microsatellite markers were selected to analyze the genetic variability and structure of 169 local trees grafted for nut production. We analyzed in the same manner 62 local nuts. The selected loci were highly discriminant for the genotypes studied, giving a combined probability of identity of 6.1 × 10−6. An unprecedented density of trees was sampled for this project over the entire region, and nuts were collected representing 18 cultivars marketed by local producers. Several instances of misclassification by local growers were detected. Fixation index estimates and analysis of molecular variance (AMOVA) data are supportive of an unexpectedly high level of genetic differentiation in El Bierzo, larger than that estimated in a previous study with broader geographical scope but based on limited local sampling (Pereira-Lorenzo et al., Tree Genet Genomes 6: 701–715, 2010a). Likewise, we have determined that clonality due to grafting had been previously overestimated. In line with these observations, no significant spatial structure was found using both a model-based Bayesian procedure and Mantel’s tests. Taken together, our results evidence the need for more fine-scale genetic studies if conservation strategies are to be efficiently improved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The European chestnut (Castanea sativa Mill.) is a multipurpose species that has been widely cultivated around the Mediterranean basin since ancient times. New varieties were brought to the Iberian Peninsula during the Roman Empire, which coexist since then with native populations that survived the last glaciation. The relevance of chestnut cultivation has being steadily growing since the Middle Ages, until the rural decline of the past century put a stop to this trend. Forest fires and diseases were also major factors. Chestnut cultivation is gaining momentum again due to its economic (wood, fruits) and ecologic relevance, and represents currently an important asset in many rural areas of Europe. In this Thesis we apply different molecular tools to help improve current management strategies. For this study we have chosen El Bierzo (Castile and Leon, NW Spain), which has a centenary tradition of chestnut cultivation and management, and also presents several unique features from a genetic perspective (next paragraph). Moreover, its nuts are widely appreciated in Spain and abroad for their organoleptic properties. We have focused our experimental work on two major problems faced by breeders and the industry: the lack of a fine-grained genetic characterization and the need for new strategies to control blight disease. To characterize with sufficient detail the genetic diversity and structure of El Bierzo orchards, we analyzed DNA from 169 trees grafted for nut production covering the entire region. We also analyzed 62 nuts from all traditional varieties. El Bierzo constitutes an outstanding scenario to study chestnut genetics and the influence of human management because: (i) it is located at one extreme of the distribution area; (ii) it is a major glacial refuge for the native species; (iii) it has a long tradition of human management (since Roman times, at least); and (iv) its geographical setting ensures an unusual degree of genetic isolation. Thirteen microsatellite markers provided enough informativeness and discrimination power to genotype at the individual level. Together with an unexpected level of genetic variability, we found evidence of genetic structure, with three major gene pools giving rise to the current population. High levels of genetic differentiation between groups supported this organization. Interestingly, genetic structure does not match with spatial boundaries, suggesting that the exchange of material and cultivation practices have strongly influenced natural gene flow. The microsatellite markers selected for this study were also used to classify a set of 62 samples belonging to all traditional varieties. We identified several cases of synonymies and homonymies, evidencing the need to substitute traditional classification systems with new tools for genetic profiling. Management and conservation strategies should also benefit from these tools. The avenue of high-throughput sequencing technologies, combined with the development of bioinformatics tools, have paved the way to study transcriptomes without the need for a reference genome. We took advantage of RNA sequencing and de novo assembly tools to determine the transcriptional landscape of chestnut in response to blight disease. In addition, we have selected a set of candidate genes with high potential for developing resistant varieties via genetic engineering. Our results evidenced a deep transcriptional reprogramming upon fungal infection. The plant hormones ET and JA appear to orchestrate the defensive response. Interestingly, our results also suggest a role for auxins in modulating such response. Many transcription factors were identified in this work that interact with promoters of genes involved in disease resistance. Among these genes, we have conducted a functional characterization of a two major thaumatin-like proteins (TLP) that belongs to the PR5 family. Two genes encoding chestnut cotyledon TLPs have been previously characterized, termed CsTL1 and CsTL2. We substantiate here their protective role against blight disease for the first time, including in silico, in vitro and in vivo evidence. The synergy between TLPs and other antifungal proteins, particularly endo-p-1,3-glucanases, bolsters their interest for future control strategies based on biotechnological approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the socioeconomic importance of walnut trees, poor rooting and recalcitrance to in vitro culture have hampered the establishment of high-yield clonal plantations. To improve walnut micropropagation, we introduced several modifications to current methods and evaluated the effects on microshoot performance and acclimatization. Nine selected genotypes (13-year-old trees) of the commercial hybrid Juglans major 209 x J. regia were cultured in vitro on DKW-C medium supplemented with 4.4 µM BA and 50 µM IBA. A protocol was developed that relies on the use of 0.40 mM phloroglucinol during shoot multiplication, 0.20 mM previous root induction, and 6.81 mg/L Fe3+ (FeEDDHA). Moreover, the addition of 83.2 µM glucose during the root expression phase significantly improved plant survival during acclimatization. Phloroglucinol promoted microshoot elongation but inhibited rooting, especially at concentrations above 0.40 mM. Replacing FeEDTA by FeEDDHA diminished chlorotic symptoms and improved rooting, with up to 90% microshoots developing viable roots. Likewise, glucose was more efficient than sucrose or fructose in promoting plant survival. At the proposed working concentrations, neither glucose nor FeEDDHA caused any noticeable deleterious effect on walnut micropropagation. Microscopic analysis revealed the physical continuity between adventitious roots and stem pericycles. Analysis of leaf genomic DNA with eight polymorphic microsatellite markers was supportive of the clonal fidelity and genetic stability of the micropropagated material. Successful clonal plantations (over 5,800 ramets) have been established by applying this protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bipolar mood disorder (BP) is a debilitating syndrome characterized by episodes of mania and depression. We designed a multistage study to detect all major loci predisposing to severe BP (termed BP-I) in two pedigrees drawn from the Central Valley of Costa Rica, where the population is largely descended from a few founders in the 16th–18th centuries. We considered only individuals with BP-I as affected and screened the genome for linkage with 473 microsatellite markers. We used a model for linkage analysis that incorporated a high phenocopy rate and a conservative estimate of penetrance. Our goal in this study was not to establish definitive linkage but rather to detect all regions possibly harboring major genes for BP-I in these pedigrees. To facilitate this aim, we evaluated the degree to which markers that were informative in our data set provided coverage of each genome region; we estimate that at least 94% of the genome has been covered, at a predesignated threshold determined through prior linkage simulation analyses. We report here the results of our genome screen for BP-I loci and indicate several regions that merit further study, including segments in 18q, 18p, and 11p, in which suggestive lod scores were observed for two or more contiguous markers. Isolated lod scores that exceeded our thresholds in one or both families also occurred on chromosomes 1, 2, 3, 4, 5, 7, 13, 15, 16, and 17. Interesting regions highlighted in this genome screen will be followed up using linkage disequilibrium (LD) methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The semaphorins comprise a large family of membrane-bound and secreted proteins, some of which have been shown to function in axon guidance. We have cloned a transmembrane semaphorin, Sema W, that belongs to the class IV subgroup of the semaphorin family. The mouse and rat forms of Sema W show 97% amino acid sequence identity with each other, and each shows about 91% identity with the human form. The gene for Sema W is divided into 15 exons, up to 4 of which are absent in the human cDNAs that we sequenced. Unlike many other semaphorins, Sema W is expressed at low levels in the developing embryo but was found to be expressed at high levels in the adult central nervous system and lung. Functional studies with purified membrane fractions from COS7 cells transfected with a Sema W expression plasmid showed that Sema W has growth-cone collapse activity against retinal ganglion-cell axons, indicating that vertebrate transmembrane semaphorins, like secreted semaphorins, can collapse growth cones. Genetic mapping of human SEMAW with human/hamster radiation hybrids localized the gene to chromosome 2p13. Genetic mapping of mouse Semaw with mouse/hamster radiation hybrids localized the gene to chromosome 6, and physical mapping placed the gene on bacteria artificial chromosomes carrying microsatellite markers D6Mit70 and D6Mit189. This localization places Semaw within the locus for motor neuron degeneration 2, making it an attractive candidate gene for this disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One intradermal injection of incomplete Freund’s adjuvant-oil induces a T cell-mediated inflammatory joint disease in DA rats. Susceptibility genes for oil-induced arthritis (OIA) are located both within and outside the major histocompatibility complex (MHC, Oia1). We have searched for disease-linked non-MHC loci in an F2 intercross between DA rats and MHC-identical but arthritis-resistant LEW.1AV1 rats. A genome-wide scan with microsatellite markers revealed two major chromosome regions that control disease incidence and severity: Oia2 on chromosome 4 (P = 4 × 10−13) and Oia3 on chromosome 10 (P = 1 × 10−6). All animals homozygous for DA alleles at both loci developed severe arthritis, whereas all those homozygous for LEW.1AV1 alleles were resistant. These results have general implications for situations where nonspecific activation of the immune system (e.g., incomplete Freund’s adjuvant-oil) causes inflammation and disease, either alone or in conjunction with specific antigens. They may also provide clues to the etiology of inflammatory diseases in humans, including rheumatoid arthritis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Losses of heterozygosity are the most common molecular genetic alteration observed in human cancers. However, there have been few systematic studies to understand the mechanism(s) responsible for losses of heterozygosity in such tumors. Here we report a detailed investigation of the five chromosomes lost most frequently in human colorectal cancers. A total of 10,216 determinations were made with 88 microsatellite markers, revealing 245 chromosomal loss events. The mechanisms of loss were remarkably chromosome-specific. Some chromosomes displayed complete loss such as that predicted to result from mitotic nondisjunction. However, more than half of the losses were associated with losses of only part of a chromosome rather than a whole chromosome. Surprisingly, these losses were due largely to structural alterations rather than to mitotic recombination, break-induced replication, or gene conversion, suggesting novel mechanisms for the generation of much of the aneuploidy in this common tumor type.