979 resultados para Methods : Statistical
Resumo:
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper
Resumo:
Two objects with homologous landmarks are said to be of the same shape if the configuration of landmarks of one object can be exactly matched with that of the other by translation, rotation/reflection, and scaling. In an earlier paper, the authors proposed statistical analysis of shape by considering logarithmic differences of all possible Euclidean distances between landmarks. Tests of significance for differences in the shape of objects and methods of discrimination between populations were developed with such data. In the present paper, the corresponding statistical methodology is developed by triangulation of the landmarks and by considering the angles as natural measurements of shape. This method is applied to the study of sexual dimorphism in hominids.
Resumo:
Pairwise sequence comparison methods have been assessed using proteins whose relationships are known reliably from their structures and functions, as described in the scop database [Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia C. (1995) J. Mol. Biol. 247, 536–540]. The evaluation tested the programs blast [Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). J. Mol. Biol. 215, 403–410], wu-blast2 [Altschul, S. F. & Gish, W. (1996) Methods Enzymol. 266, 460–480], fasta [Pearson, W. R. & Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444–2448], and ssearch [Smith, T. F. & Waterman, M. S. (1981) J. Mol. Biol. 147, 195–197] and their scoring schemes. The error rate of all algorithms is greatly reduced by using statistical scores to evaluate matches rather than percentage identity or raw scores. The E-value statistical scores of ssearch and fasta are reliable: the number of false positives found in our tests agrees well with the scores reported. However, the P-values reported by blast and wu-blast2 exaggerate significance by orders of magnitude. ssearch, fasta ktup = 1, and wu-blast2 perform best, and they are capable of detecting almost all relationships between proteins whose sequence identities are >30%. For more distantly related proteins, they do much less well; only one-half of the relationships between proteins with 20–30% identity are found. Because many homologs have low sequence similarity, most distant relationships cannot be detected by any pairwise comparison method; however, those which are identified may be used with confidence.
Resumo:
Two objects with homologous landmarks are said to be of the same shape if the configurations of landmarks of one object can be exactly matched with that of the other by translation, rotation/reflection, and scaling. The observations on an object are coordinates of its landmarks with reference to a set of orthogonal coordinate axes in an appropriate dimensional space. The origin, choice of units, and orientation of the coordinate axes with respect to an object may be different from object to object. In such a case, how do we quantify the shape of an object, find the mean and variation of shape in a population of objects, compare the mean shapes in two or more different populations, and discriminate between objects belonging to two or more different shape distributions. We develop some methods that are invariant to translation, rotation, and scaling of the observations on each object and thereby provide generalizations of multivariate methods for shape analysis.
Resumo:
The field of natural language processing (NLP) has seen a dramatic shift in both research direction and methodology in the past several years. In the past, most work in computational linguistics tended to focus on purely symbolic methods. Recently, more and more work is shifting toward hybrid methods that combine new empirical corpus-based methods, including the use of probabilistic and information-theoretic techniques, with traditional symbolic methods. This work is made possible by the recent availability of linguistic databases that add rich linguistic annotation to corpora of natural language text. Already, these methods have led to a dramatic improvement in the performance of a variety of NLP systems with similar improvement likely in the coming years. This paper focuses on these trends, surveying in particular three areas of recent progress: part-of-speech tagging, stochastic parsing, and lexical semantics.
Resumo:
In the analysis of heart rate variability (HRV) are used temporal series that contains the distances between successive heartbeats in order to assess autonomic regulation of the cardiovascular system. These series are obtained from the electrocardiogram (ECG) signal analysis, which can be affected by different types of artifacts leading to incorrect interpretations in the analysis of the HRV signals. Classic approach to deal with these artifacts implies the use of correction methods, some of them based on interpolation, substitution or statistical techniques. However, there are few studies that shows the accuracy and performance of these correction methods on real HRV signals. This study aims to determine the performance of some linear and non-linear correction methods on HRV signals with induced artefacts by quantification of its linear and nonlinear HRV parameters. As part of the methodology, ECG signals of rats measured using the technique of telemetry were used to generate real heart rate variability signals without any error. In these series were simulated missing points (beats) in different quantities in order to emulate a real experimental situation as accurately as possible. In order to compare recovering efficiency, deletion (DEL), linear interpolation (LI), cubic spline interpolation (CI), moving average window (MAW) and nonlinear predictive interpolation (NPI) were used as correction methods for the series with induced artifacts. The accuracy of each correction method was known through the results obtained after the measurement of the mean value of the series (AVNN), standard deviation (SDNN), root mean square error of the differences between successive heartbeats (RMSSD), Lomb\'s periodogram (LSP), Detrended Fluctuation Analysis (DFA), multiscale entropy (MSE) and symbolic dynamics (SD) on each HRV signal with and without artifacts. The results show that, at low levels of missing points the performance of all correction techniques are very similar with very close values for each HRV parameter. However, at higher levels of losses only the NPI method allows to obtain HRV parameters with low error values and low quantity of significant differences in comparison to the values calculated for the same signals without the presence of missing points.
Resumo:
Non-suicidal self-injury (NSSI), such as cutting and burning, is a widespread social problem among lesbian, gay, bisexual, transgender, queer, and questioning (LGBTQ) youth. Extant research indicates that this population is more than twice as likely to engage in NSSI than heterosexual and cisgender (non-transgender) youth. Despite the scope of this social problem, it remains relatively unexamined in the literature. Research on other risk behaviors among LGBTQ youth indicates that experiencing homophobia and transphobia in key social contexts such as families, schools, and peer relationships contributes to health disparities among this group. Consequently, the aims of this study were to examine: (1) the relationship between LGBTQ youth's social environments and their NSSI behavior, and (2) whether/how specific aspects of the social environment contribute to an understanding of NSSI among LGBTQ youth. This study was conducted using an exploratory, sequential mixed methods design with two phases. The first phase of the study involved analysis of transcripts from interviews conducted with 44 LGBTQ youth recruited from a community-based organization. In this phase, five qualitative themes were identified: (1) Violence; (2) Misconceptions, Stigma, and Shame; (3) Negotiating LGBTQ Identity; (4) Invisibility and Isolation; and (5) Peer Relationships. Results from the qualitative phase were used to identify key variables and specify statistical models in the second, quantitative, phase of the study, using secondary data from a survey of 252 LGBTQ youth. The qualitative phase revealed how LGBTQ youth, themselves, described the role of the social environment in their NSSI behavior, while the quantitative phase was used to determine whether the qualitative findings could be used to predict engagement in NSSI among a larger sample of LGBTQ youth. The quantitative analyses found that certain social-environmental factors such as experiencing physical abuse at home, feeling unsafe at school, and greater openness about sexual orientation significantly predicted the likelihood of engaging in NSSI among LGBTQ youth. Furthermore, depression partially mediated the relationships between family physical abuse and NSSI and feeling unsafe at school and NSSI. The qualitative and quantitative results were compared in the interpretation phase to explore areas of convergence and incongruence. Overall, this study's findings indicate that social-environmental factors are salient to understanding NSSI among LGBTQ youth. The particular social contexts in which LGBTQ youth live significantly influence their engagement in this risk behavior. These findings can inform the development of culturally relevant NSSI interventions that address the social realities of LGBTQ youth's lives.
Resumo:
The elemental analysis of Spanish palm dates by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry is reported for the first time. To complete the information about the mineral composition of the samples, C, H, and N are determined by elemental analysis. Dates from Israel, Tunisia, Saudi Arabia, Algeria and Iran have also been analyzed. The elemental composition have been used in multivariate statistical analysis to discriminate the dates according to its geographical origin. A total of 23 elements (As, Ba, C, Ca, Cd, Co, Cr, Cu, Fe, H, In, K, Li, Mg, Mn, N, Na, Ni, Pb, Se, Sr, V, and Zn) at concentrations from major to ultra-trace levels have been determined in 13 date samples (flesh and seeds). A careful inspection of the results indicate that Spanish samples show higher concentrations of Cd, Co, Cr, and Ni than the remaining ones. Multivariate statistical analysis of the obtained results, both in flesh and seed, indicate that the proposed approach can be successfully applied to discriminate the Spanish date samples from the rest of the samples tested.
Resumo:
Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is partially thickened and blood flow is - potentially fatally - obstructed. It is one of the leading causes of sudden cardiac death in young people. Electrocardiography (ECG) and Echocardiography (Echo) are the standard tests for identifying HCM and other cardiac abnormalities. The American Heart Association has recommended using a pre-participation questionnaire for young athletes instead of ECG or Echo tests due to considerations of cost and time involved in interpreting the results of these tests by an expert cardiologist. Initially we set out to develop a classifier for automated prediction of young athletes’ heart conditions based on the answers to the questionnaire. Classification results and further in-depth analysis using computational and statistical methods indicated significant shortcomings of the questionnaire in predicting cardiac abnormalities. Automated methods for analyzing ECG signals can help reduce cost and save time in the pre-participation screening process by detecting HCM and other cardiac abnormalities. Therefore, the main goal of this dissertation work is to identify HCM through computational analysis of 12-lead ECG. ECG signals recorded on one or two leads have been analyzed in the past for classifying individual heartbeats into different types of arrhythmia as annotated primarily in the MIT-BIH database. In contrast, we classify complete sequences of 12-lead ECGs to assign patients into two groups: HCM vs. non-HCM. The challenges and issues we address include missing ECG waves in one or more leads and the dimensionality of a large feature-set. We address these by proposing imputation and feature-selection methods. We develop heartbeat-classifiers by employing Random Forests and Support Vector Machines, and propose a method to classify full 12-lead ECGs based on the proportion of heartbeats classified as HCM. The results from our experiments show that the classifiers developed using our methods perform well in identifying HCM. Thus the two contributions of this thesis are the utilization of computational and statistical methods for discovering shortcomings in a current screening procedure and the development of methods to identify HCM through computational analysis of 12-lead ECG signals.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"C00-2118-0048."
Resumo:
Two different slug test field methods are conducted in wells completed in a Puget Lowland aquifer and are examined for systematic error resulting from water column displacement techniques. Slug tests using the standard slug rod and the pneumatic method were repeated on the same wells and hydraulic conductivity estimates were calculated according to Bouwer & Rice and Hvorslev before using a non-parametric statistical test for analysis. Practical considerations of performing the tests in real life settings are also considered in the method comparison. Statistical analysis indicates that the slug rod method results in up to 90% larger hydraulic conductivity values than the pneumatic method, with at least a 95% certainty that the error is method related. This confirms the existence of a slug-rod bias in a real world scenario which has previously been demonstrated by others in synthetic aquifers. In addition to more accurate values, the pneumatic method requires less field labor, less decontamination, and provides the ability to control the magnitudes of the initial displacement, making it the superior slug test procedure.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06