959 resultados para Metabolic Control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reconstructed cellular metabolic network of Mus musculus, based on annotated genomic data, pathway databases, and currently available biochemical and physiological information, is presented. Although incomplete, it represents the first attempt to collect and characterize the metabolic network of a mammalian cell on the basis of genomic data. The reaction network is generic in nature and attempts to capture the carbon, energy, and nitrogen metabolism of the cell. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, including transport reactions between the compartments and the extracellular medium. The reaction list consists of 872 internal metabolites involved in a total of 1220 reactions, whereof 473 relate to known open reading frames. Initial in silico analysis of the reconstructed model is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. We examined the effect of thermal acclimation on fighting success and underlying performance traits in the crayfish Cherax destructor. We tested the hypothesis that animals will be more successful when fighting at their acclimation temperature than at a colder or warmer temperature, and that changes in metabolic capacity underlie differences in behavioural performance. 2. Thermal acclimation (to 20 degrees C and to 30 degrees C) had a significant effect on behavioural contests, and the likelihood of winning was significantly greater when individuals fought at their acclimation temperature against an individual from an alternate acclimation temperature. 3. The ratio of ADP stimulated respiration to proton leak (respiratory control ratio) of isolated mitochondria increased significantly in chelae muscle of the cold-acclimated group, and differences in respiratory control ratio between winners and losers were significantly correlated with the outcome of agonistic encounters. However, acclimation did not affect tall muscle mitochondria or the activity of pyruvate kinase in either chelae or tail muscle. 4. The force produced by closing chelae was thermally insensitive within acclimation groups, and there were no significant differences between acclimation treatments. None the less, differences in chelae width between contestants were significantly correlated with the outcome of agonistic encounters, but this perceived resource holding power did not reflect the actual power of force production. 5. Thermal acclimation in C destructor has beneficial consequences for dominance and competitive ability, and the success of cold acclimated animals at the cold temperatures can be at least partly explained by concomitant up-regulation of oxidative ATP production capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full text: Several Lancet publications have questioned the value of glycaemic control in diabetic patients. For example, in their Comment (Sept 29, p 1103),1 John Cleland and Stephen Atkin state that “Improved glycaemic control is not a surrogate for effective care of patients who have diabetes”, and Victor Montori and colleagues (p 1104)2 claim that “HbA1c loses its validity as a surrogate marker when patients have a constellation of metabolic abnormalities”. We are concerned that the reaction against “glucocentricity” in the field of diabetes has gone too far. Even the UK's National Prescribing Centre website, carrying the National Health Service logo, includes comments that undermine the value of glycaemic control. For example, referring to the United Kingdom Prospective Diabetes Study (UKPDS), this site states that “Compared with ‘conventional control’ there was no benefit from tight control of blood glucose with sulphonylureas or insulin with regard to total mortality, diabetes-related death, macrovascular outcomes or microvascular outcomes, including all the most serious ones such as blindness or kidney failure”.3 It is well established that better glycaemic control reduces long-term microvascular complications in type 1 and type 2 diabetes.4 In type 2 diabetes, the UKPDS reported that a composite microvascular endpoint (retinopathy requiring photocoagulation, vitreous haemorrhage, and fatal or non-fatal renal failure) was reduced by 25% in patients randomised to intensive glucose control (p=0·0099).4 To imply that these are not patient-relevant outcomes is to distort the evidence. Many studies have also found that improved glycaemic control reduces macrovascular complications.5 Do not be misled: glycaemic control remains a crucial component in the care of people with diabetes. The authors have received research support and undertaken ad hoc consultancies and speaker engagements for several pharmaceutical companies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incretin hormone glucagon-like peptide-1(7-36)amide (GLP-1) has been deemed of considerable importance in the regulation of blood glucose. Its effects, mediated through the regulation of insulin, glucagon, and somatostatin, are glucose-dependent and contribute to the tight control of glucose levels. Much enthusiasm has been assigned to a possible role of GLP-1 in the treatment of type 2 diabetes. GLIP-l's action unfortunately is limited through enzymatic inactivation caused by dipeptidylpeptidase IV (DPP IV). It is now well established that modifying GLP-1 at the N-terminal amino acids, His7 and Ala8, can greatly improve resistance to this enzyme. Little research has assessed what effect Glu9-substitution has on GLP-1 activity and its degradation by DPP IV. Here, we report that the replacement of Glu9 of GLP-1 with Lys dramatically increased resistance to DPP IV. This analogue (Lys9)GLP-1, exhibited a preserved GLP-1 receptor affinity, but the usual stimulatory effects of GLP-1 were completely eliminated, a trait duplicated by the other established GLP-1-antagonists, exendin (9-39) and GLP-1 (9-36)amide. We investigated the in vivo antagonistic actions of (Lys9)GLP-1 in comparison with GLP-1(9-36)amide and exendin (9-39) and revealed that this novel analogue may serve as a functional antagonist of the GLP-1 receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of chronic inflammation is associated with increased nutrient availability during obesity or type 2 diabetes which contributes to the development of complications such as atherosclerosis, stroke and myocardial infarction. The link between increased nutrient availability and inflammatory response remains poorly understood. The functioning of monocytes, the primary instigators of the inflammatory response was assessed in response to obesity and increased glucose availability. Monocyte microRNA expression was assessed in obese individuals prior to and up to one year after bariatric surgery. A number of microRNAs were identified to be dysregulated in obesity, some of which have previously been linked to the regulation of monocyte inflammatory responses including the microRNAs 146a-5p and 424-5p. Weight loss in response to bariatric surgery lead to the reversal of microRNA changes towards control values. In vitro treatments of THP-1 monocytes with high concentrations of D-glucose resulted in decreased intracellular NAD+:NADH ratio, decreased SIRT1 deacetylase activity and increased P65 acetylation. However the increased osmotic concentration inhibited LPS induced inflammatory response and TNFα mRNA expression. In vitro treatment of primary human monocytes with increased concentrations of D-glucose resulted in increased secretion of a number of inflammatory cytokines and increased expression of TNFα mRNA. Treatment also resulted in decreased intracellular NAD+:NADH ratio and increased binding of acetylated P65 to the TNFα promoter region. In vitro treatments of primary monocytes also replicated the altered expression of the microRNAs 146a-5p and miR-424-5p, as seen in obese individuals. In conclusion a number of changes in monocyte function were observed in response to obesity and treatment with high concentrations of D-glucose. These may lead to the dysregulation of inflammatory responses contributing to the development of co-morbidities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major problem with breast cancer treatment is the prevalence of antiestrogen resistance, be it de novo or acquired after continued use. Many of the underlying mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated actions have been identified as a pathway that is blocked by antiestrogens. Selective estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing reactive oxygen species (ROS) through metabolic activation, and these ROS, at high levels, can induce irreversible growth arrest that is similar to the growth arrest incurred by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt to this increased, persistent level of ROS. This, in turn, leads to the disruption of reversible redox signaling that involves redox-sensitive phosphatases and protein kinases and transcription factors. This has downstream consequences for apoptosis, cell cycle progression, and cell metabolism. For this dissertation, we explored if altering the ROS formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation of thioredoxin-mediated redox regulation contributing to the development of antiestrogen resistance in breast cancer. We used standard laboratory techniques to perform proteomic assays that showed cell proliferation, protein concentrations, redox states, and protein-protein interactions. We found that increasing thioredoxin reductase levels, and thus increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and that the downstream effects showed a decrease p27 phosphorylation in both cases. We conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell growth can be reversed with an alteration to the thioredoxin/Jab1 pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate to what degree the presence of hypertension (HTN) and poor glycemic control (GC) influences the likelihood of having microalbuminuria (MAU) among Cuban Americans with type 2 diabetes (T2D).Methods: A cross-sectional study conducted in Cuban Americans (n = 179) with T2D. Participants were recruited from a randomly generated mailing list purchased from KnowledgeBase Marketing, Inc. Blood pressure (BP) was measured twice and averaged using an adult size cuff. Glycosylated hemoglobin (A1c) levels were measured from whole blood samples with the Roche Tina-quant method. First morning urine samples were collected from each participant to determine MAU by a semiquantitative assay (ImmunoDip).Results: MAU was present in 26% of Cuban Americans with T2D. A significantly higher percentage of subjects with MA had HTN (P = 0.038) and elevated A1C (P = 0.002) than those with normoalbuminuria. Logistic regression analysis showed that after controlling for covariates, subjects with poor GC were 6.76 times more likely to have MAU if they had hypertension compared with those without hypertension (P = 0.004; 95% confidence interval [CI]: 1.83, 23.05). Conclusion: The clinical significance of these findings emphasizes the early detection of MAU in this Hispanic subgroup combined with BP and good GC, which are fundamentals in preventing and treating diabetes complications and improving individuals’ renal and cardiovascular outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Dysregulated glucose homeostasis is a hallmark of Type 2diabetes. A distinctive feature of ageing is the accumulation ofsenescent cells, defined as cells that have undergone irreversible lossof proliferative capacity. Characteristic of senescent cells is thesenescence-associated secretory phenotype (SASP) involving theproduction of factors which reinforce senescence arrest in neigh-bouring tissue environments. We hypothesise that SASP inducesmetabolic dysfunction in non-senescent cells, impairing glucosemetabolism and propagating insulin resistance. We sought todetermine the effect of SASP on glucose homeostasis in hepatic,adipose and skeletal muscle cell lines. Methods: Human dermal fibroblasts were subjected to a geno-toxic dose of doxorubicin to induce senescence, confirmed using ab-galactosidase assay. Conditioned media containing SASP werecollected post 24h and 48h of inducing senescence and used at20% and 40% concentrations to treat AML-12 hepatocytes, 3T3-L1 adipocytes and C2C12 myocytes for 24h and 48h. Cells andmedia were collected and glucose and lipid concentrations weremeasured before and after the respective incubation periods. Results: Cell media obtained from C2C12 myocytes exposed to40% SASP for 24h and 48h and AML-12 hepatocytes after 48hexhibited significantly higher concentrations of glucose in com-parison to control media (p < 0.0001, p < 0.05) suggesting areduced glucose uptake. Glucose utilisation remained unchanged in3T3-L1 cells. Conclusion: Our data suggest an important role for SASP inaltering glucose homeostasis and identify SASP as a potentialmediator between ageing and the increase in age-related insulinresistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the abundant literature clearly demonstrating the ability of SFO neurons to sense and respond to a plethora of circulating signals that influence various physiological systems, investigation of how simultaneously sensed signals interact and are integrated in the SFO is lacking. In this study, we use patch clamp techniques to investigate how the traditionally classified ‘cardiovascular’ hormone angiotensin II (ANG), ‘metabolic’ hormone cholecystokinin (CCK) and ‘metabolic’ signal glucose interact and are integrated in the SFO. Sequential bath-application of CCK (10nM) and ANG (10nM) onto dissociated SFO neurons revealed that: 63% of responsive SFO neurons depolarized to both CCK & ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypo-, normo- or hyperglycemic conditions for a minimum of 24 hours and comparing the proportions of responses to ANG (n=55) or CCK (n=83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG (X2, p<0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK (X2, p<0.01). These data demonstrate that SFO neurons excited by CCK are also excited by ANG, suggesting that CCK may influence fluid intake or blood pressure via the SFO, complementary to the well-understood actions of ANG at this site. Additionally, the demonstration that glucose environment affects the responsiveness of neurons to both these hormones highlights the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals to affect transmission of information from the circulation to the brain, which has important implications for this structure’s critical role regulation of autonomic function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant reproduction depends on the concerted activation of many genes to ensure correct communication between pollen and pistil. Here, we queried the whole transcriptome of Arabidopsis (Arabidopsis thaliana) in order to identify genes with specific reproductive functions. We used the Affymetrix ATH1 whole genome array to profile wild-type unpollinated pistils and unfertilized ovules. By comparing the expression profile of pistils at 0.5, 3.5, and 8.0 h after pollination and applying a number of statistical and bioinformatics criteria, we found 1,373 genes differentially regulated during pollen-pistil interactions. Robust clustering analysis grouped these genes in 16 time-course clusters representing distinct patterns of regulation. Coregulation within each cluster suggests the presence of distinct genetic pathways, which might be under the control of specific transcriptional regulators. A total of 78% of the regulated genes were expressed initially in unpollinated pistil and/or ovules, 15% were initially detected in the pollen data sets as enriched or preferentially expressed, and 7% were induced upon pollination. Among those, we found a particular enrichment for unknown transcripts predicted to encode secreted proteins or representing signaling and cell wall-related proteins, which may function by remodeling the extracellular matrix or as extracellular signaling molecules. A strict regulatory control in various metabolic pathways suggests that fine-tuning of the biochemical and physiological cellular environment is crucial for reproductive success. Our study provides a unique and detailed temporal and spatial gene expression profile of in vivo pollen-pistil interactions, providing a framework to better understand the basis of the molecular mechanisms operating during the reproductive process in higher plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth-curves are an important tool for evaluating the anthropometric development in pediatrics. The different growth-curves available are based in different populations, what leads to different cut-offs. Pediatric obesity tracks into adulthood and is associated with increased cardiovascular risk. The accurate assessment of a child nutritional status using growth-curves can indicate individuals that are either obese or in risk of becoming obese, allowing an early intervention. Moreover, the association between the data obtained from growth-curves with specific metabolic risk factors further highlights the importance of these charts. This study aimed to evaluate the associations between body mass index z-score (BMIzsc), determined using the growth-curves from the Centre for Disease Control and Prevention (CDC) and from the World Health Organization (WHO), with cardiovascular risk factors, represented here by metabolic syndrome (MS) and insulin resistance (IR) related parameters. The study involved 246 obese adolescents (10-18 years, 122 females). MS was defined according to the International Diabetes Federation. IR was considered for HOMA-IR greater than 2.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La demanda de una producción de alimentos cada vez mayor a nivel mundial sumado a la tecnificación y al ritmo acelerado del progreso de las explotaciones agropecuarias actuales hacen que el ganado deba soportar elevadas presiones de producción aumentando los requerimientos de nutrientes. Este es el caso de los minerales considerados actualmente elementos esenciales para los animales, aunque tradicionalmente fueron definidos como los nutrientes pobres de la nutrición y alimentación animal. Actualmente se ha demostrado con evidencia clínica y productiva, el importante rol metabólico de los minerales en el animal sano y productivo, como también se ha definido qué elemento mineral y porcentaje del mismo es requerido para el normal funcionamiento del organismo. Los macro-minerales (calcio, magnesio, fósforo, sodio, potasio, cloro y azufre) y los oligo-minerales (cobre, zinc, hierro, selenio, cobalto, iodo, manganeso, molibdeno y cromo) son elementos esenciales y necesarios para transformar la proteína y la energía de los alimentos en componentes del organismo o en productos animales como leche, carne, crías, piel, lana. Además, ayudan al organismo a combatir las enfermedades, manteniendo al animal en buen estado de salud. Se ha considerado a los minerales como el tercer grupo limitante en la nutrición animal, siendo a su vez, el que mayor potencial y menor costo tiene para incrementar la producción del ganado. Los minerales desempeñan funciones tan importantes como ser constituyentes de la estructura ósea y dental, de tejidos blandos y líquidos corporales. Están involucrados en el funcionamiento celular, siendo activadores de más de trescientas enzimas, constituyentes esenciales de vitaminas, hormonas y pigmentos respiratorios y facilitando la actividad de los microorganismos del rumen. Cuando el aporte de minerales en la ración no es el adecuado en calidad y/o cantidad se originan las deficiencias minerales, encuadradas dentro de las enfermedades metabólicas o enfermedades de la producción. Estas han sido informadas en casi todo el mundo y son responsables de importantes pérdidas económicas en los rodeos de bovinos para carne. Las deficiencias y/o desequilibrios minerales pueden causar los siguientes trastornos en los animales: bajo porcentaje de parición, mayor número de servicios por concepción, abortos, retenciones placentarias, incremento del intervalo entre partos, baja producción de leche, menor peso al nacimiento y al destete, menor porcentaje de destete, menor ganancia de peso, mayor incidencia de enfermedades infecciosas, fracturas espontáneas, diarrea, deformación de huesos y mortandad. Así cobra importancia el diagnóstico mediante el análisis de la sangre de los animales, del pasto y el agua que consumen y la caracterización de estas deficiencias en primarias o secundarias con el objetivo de poder realizar un control de las mismas mediante un adecuado plan de suplementación mineral acorde a las necesidades de los distintos establecimientos agropecuarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

METABOLIC CHANNELING OF PHE FOR LIGNIN BIOSYNTHESIS IN MARITIME PINE Jorge El-Azaz, Fernando de la Torre, Belén Pascual, Concepción Ávila and Francisco M. Cánovas Departamento de Biología Molecular y Bioquímica, Universidad de Málaga. Málaga, Spain Email: jelazaz@alu.uma.es The amino acid phenylalanine (Phe) is the main precursor of phenylpropanoids biosynthesis in plants. This vast family of Phederived compounds can represent up to 30% of captured photosynthetic carbon, playing essential roles in plants such as cell wall components, defense molecules, pigments and flavors. In addition to its physiological importance, phenylpropanoids and particularly lignin, a component of wood, are targets in plant biotechnology. The arogenate pathway has been proposed as the main pathway for Phe biosynthesis in plants (Maeda et al., 2010). The final step in Phe biosynthesis, catalyzed by the enzyme arogenate dehydratase (ADT), has been considered as a key regulatory point in Phe biosynthesis, due to its key branch position in the pathway, the multiple isoenzymes identified in plants and the existence of a feedback inhibition mechanism by Phe. So far, the regulatory mechanisms underlying ADT genes expression have been poorly characterized, although a strong regulation of the Phe metabolic flux should be expected depending on its alternative use for protein biosynthesis versus phenylpropanoid biosynthesis. This second fate involves a massive carbon flux compared to the first one. In this study we report our current research activities in the transcriptional regulation of ADT genes by MYB transcription factors in the conifer Pinus pinaster (maritime pine). The conifers channels massive amounts of photosynthetic carbon for phenylpropanoid biosynthesis during wood formation. We have identified the complete ADT gene family in maritime pine (El-Azaz et al., 2016) and a set of ADT isoforms specifically related with the lignification process. The potential control of transcription factors previously reported as key regulators in pine wood formation (Craven-Bartle et al., 2013) will be presented. Maeda et al. (2010) Plant Cell 22: 832-849. El-Azaz et al. (2016) The Plant Jounal. Accepted article, doi: 10.1111/tpj.13195 Craven-Bartle et al. (2013). The Plant Journal 74(5):755-766

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of different exercise modalities on high sensitivity-C reactive protein (hs-CRP) and other inflammatory markers in patients with type 2 diabetes and the metabolic syndrome. Eighty-two patients were randomized into 4 groups: sedentary control (A); receiving counseling to perform low-intensity physical activity (B); performing prescribed and supervised high-intensity aerobic (C) or aerobic + resistance (D) exercise (with the same caloric expenditure) for 12 months. Evaluation of leisure-time physical activity and assessment of physical fitness, cardiovascular risk factors and inflammatory biomarkers was performed at baseline and every 3 months. Volume of physical activity increased and HbA1c decreased in Groups B–D. VO2max, HOMA-IR index, HDL-cholesterol, waist circumference and albuminuria improved in Groups C and D, whereas strength and flexibility improved only in Group D. Levels of hs-CRP decreased in all three exercising groups, but the reduction was significant only in Groups C and D, and particularly in Group D. Changes in VO2max and the exercise modalities were strong predictors of hs-CRP reduction, independent of body weight. Leptin, resistin and interleukin-6 decreased, whereas adiponectin increased in Groups C and D. Interleukin-1β, tumor necrosis factor-α and interferon-γ decreased, whereas anti-inflammatory interleukin-4 and 10 increased only in Group D. In conclusion, physical exercise in type 2 diabetic patients with the metabolic syndrome is associated with a significant reduction of hs-CRP and other inflammatory and insulin resistance biomarkers, independent of weight loss. Long-term high-intensity (preferably mixed) training, in addition to daytime physical activity, is required to obtain a significant anti-inflammatory effect.