941 resultados para Mercury.
Resumo:
We examined the use of mercury (Hg) and nitrogen and carbon stable isotopes in teeth of polar bear (Ursus maritimus) from Svalbard as biotracers of temporal changes in Hg pollution exposure between 1964 and 2003. Teeth were regarded as a good matrix of the Hg exposure, and in total 87 teeth of polar bears were analysed. Dental Hg levels ranged from 0.6 to 72.3 ng/g dry weight and increased with age during the first 10 years of life. A decreasing time trend in Hg concentrations was observed over the recent four decades while no temporal changes were found in the stable isotope ratios of nitrogen (d15N) and carbon (d13C). This suggests that the decrease of Hg concentrations over time was more likely due to a lower environmental Hg exposure in this region rather than a shift in the feeding habits of Svalbard polar bears.
Resumo:
Among-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (d15N) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA). A subset of 216 char from 24 populations was used for spatial comparison, after length-adjustment. The influence of trophic position and food web length and abiotic characteristics such as location, geomorphology, lake area, catchment area, catchment-to-lake area ratio of the lakes on adjusted THg concentrations in char muscle tissue were then evaluated. Arctic char from Amituk Lake (Cornwallis Island) had the highest Hg concentrations (1.31 µg/g wet wt), while Tessisoak Lake (Labrador, 0.07 µg/g wet wt) had the lowest. Concentrations of THg were positively correlated with size, d15N, and age, respectively, in 88,71, and 58% of 24 char populations. Length and d15N were correlated in 67% of 24 char populations. Food chain length did not explain the differences in length-adjusted THg concentrations in char. No relationships between adjusted THg concentrations in char and latitude or longitude were found, however, THg concentrations in char showed a positive correlation with catchment-to-lake area ratio. Furthermore, we conclude that inputs from the surrounding environment may influence THg concentrations, and will ultimately affect THg concentrations in char as a result of predicted climate-driven changes that may occur in Arctic lake watersheds.
Resumo:
Total mercury concentration in waters of the Atlantic Ocean and Mediterranean Sea measured in January-April 1982 varied from 0.007 to 0.192 µg/l. Particulate form was 1.6-16% of dissolved form. Inorganic mercury accounted for 16-67% of dissolved mercury. Total mercury concentration in the surface film was 0.74-1.85 µg/l, 10-40 times higher than in seawater. Concentration of particulate form in the film was from 100 to 400 times higher than in seawater.